Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Endocrinology ; 149(3): 971-8, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18039774

RESUMO

Mice with a targeted disruption of bombesin receptor subtype-3 (BRS-3 KO) develop hyperphagia, obesity, hypertension, and impaired glucose metabolism. However, the factors contributing to their phenotype have not been clearly established. To determine whether their obesity is a result of increased food intake or a defect in energy regulation, we matched the caloric intake of BRS-3 KO mice to wild-type (WT) ad libitum (ad lib)-fed controls over 21 wk. Although BRS-3 KO ad lib-fed mice were 29% heavier, the body weights of BRS-3 KO pair-fed mice did not differ from WT ad lib-fed mice. Pair-feeding BRS-3 KO mice normalized plasma insulin but failed to completely reverse increased adiposity and leptin levels. Hyperphagia in ad lib-fed KO mice was due to an increase in meal size without a compensatory decrease in meal frequency resulting in an increase in total daily food intake. An examination of neuropeptide Y, proopiomelanocortin, and agouti-related peptide gene expression in the arcuate nucleus revealed that BRS-3 KO mice have some deficits in their response to energy regulatory signals. An evaluation of the satiety effects of cholecystokinin, bombesin, and gastrin-releasing peptide found no differences in feeding suppression by these peptides. We conclude that hyperphagia is a major factor leading to increased body weight and hyperinsulinemia in BRS-3 KO mice. However, our finding that pair-feeding did not completely normalize fat distribution and plasma leptin levels suggests there is also a metabolic dysregulation that may contribute to, or sustain, their obese phenotype.


Assuntos
Hiperfagia/complicações , Hiperfagia/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Receptores da Bombesina/metabolismo , Adiposidade/efeitos dos fármacos , Adiposidade/fisiologia , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Bombesina/farmacologia , Colecistocinina/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Peptídeo Liberador de Gastrina/farmacologia , Glucose/metabolismo , Hiperinsulinismo/etiologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Insulina/sangue , Leptina/sangue , Masculino , Camundongos , Camundongos Knockout , Saciação/fisiologia , Aumento de Peso
2.
Endocrinology ; 150(2): 672-8, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18818295

RESUMO

Gastrin-releasing peptide (GRP) is a bombesin-like peptide widely distributed in the gastrointestinal tract and central nervous system. In the brain, GRP mRNA is located in the hypothalamic paraventricular nucleus (PVN), a region that receives neural input from the arcuate nucleus and plays a critical role in food intake and energy balance. Because GRP neurons are localized in the vicinity of projection sites in the PVN for peptides that participate in energy homeostasis, we investigated whether GRP mRNA expression in the PVN may be sensitive to challenges imposed by either 38 h food deprivation or stimulation of the melanocortin system by the melanocortin 3/4 receptor agonist, melanotan II (MTII). We found that food deprivation significantly decreased GRP mRNA expression, whereas lateral ventricular MTII administration increased GRP mRNA expression in ad libitum-fed rats 4 h after administration. Furthermore, administration of MTII at a dose that reduces 24 h food intake and body weight prevented the decrease in GRP mRNA expression observed in animals that were pair fed to the amount of food consumed by those injected with MTII. These results demonstrate that food deprivation and stimulation of the melanocortin system produce opposing changes in GRP gene expression in the PVN, suggesting that GRP-containing neurons in the PVN may be part of the hypothalamic signaling pathway controlling food intake and energy balance.


Assuntos
Privação de Alimentos/fisiologia , Peptídeo Liberador de Gastrina/genética , Regulação da Expressão Gênica , Núcleo Hipotalâmico Paraventricular/metabolismo , Peptídeos Cíclicos/farmacologia , Receptores de Melanocortina/agonistas , alfa-MSH/análogos & derivados , Animais , Regulação do Apetite/efeitos dos fármacos , Regulação do Apetite/genética , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Peptídeo Liberador de Gastrina/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Homeostase/genética , Masculino , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , alfa-MSH/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA