Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612759

RESUMO

As a regulator of alveolo-capillary barrier integrity, Transient Receptor Potential Vanilloid 4 (TRPV4) antagonism represents a promising strategy for reducing pulmonary edema secondary to chemical inhalation. In an experimental model of acute lung injury induced by exposure of anesthetized swine to chlorine gas by mechanical ventilation, the dose-dependent effects of TRPV4 inhibitor GSK2798745 were evaluated. Pulmonary function and oxygenation were measured hourly; airway responsiveness, wet-to-dry lung weight ratios, airway inflammation, and histopathology were assessed 24 h post-exposure. Exposure to 240 parts per million (ppm) chlorine gas for ≥50 min resulted in acute lung injury characterized by sustained changes in the ratio of partial pressure of oxygen in arterial blood to the fraction of inspiratory oxygen concentration (PaO2/FiO2), oxygenation index, peak inspiratory pressure, dynamic lung compliance, and respiratory system resistance over 24 h. Chlorine exposure also heightened airway response to methacholine and increased wet-to-dry lung weight ratios at 24 h. Following 55-min chlorine gas exposure, GSK2798745 marginally improved PaO2/FiO2, but did not impact lung function, airway responsiveness, wet-to-dry lung weight ratios, airway inflammation, or histopathology. In summary, in this swine model of chlorine gas-induced acute lung injury, GSK2798745 did not demonstrate a clinically relevant improvement of key disease endpoints.


Assuntos
Lesão Pulmonar Aguda , Antineoplásicos , Benzimidazóis , Compostos de Espiro , Animais , Suínos , Cloro/toxicidade , Canais de Cátion TRPV , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Inflamação , Oxigênio
2.
J Pharmacol Exp Ther ; 376(3): 436-443, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33376150

RESUMO

Transient receptor potential vanilloid 4 (TRPV4) channels expressed on pulmonary endothelial cells are activated by elevated pulmonary vascular pressure, resulting in endothelial shape change, pulmonary barrier disruption, and edema. As such, TRPV4 blocker GSK2798745 was recently investigated in phase I/IIa trials to reduce pulmonary edema caused by heart failure (HF). In the absence of a suitable TRPV4 target engagement biomarker, we hypothesized that an ex vivo assay could be used to predict pharmacological activity at the intended site of action (endothelial cells) of subjects. In this assay, the ability of GSK2798745 to block TRPV4 agonist GSK1016790-induced impendence reduction in human umbilical vein endothelial cells (HUVECs) in the presence of human whole blood was assessed. Blood from healthy volunteers drawn 1-12 hours after single or repeated dose of GSK2798745 (5 mg) inhibited GSK1016790-induced impedance reduction by ≥85%. Similarly, blood samples from 16 subjects with HF dosed with GSK2798745 (2.4 mg) inhibited GSK1016790-induced HUVEC impedance reduction by ≥58% 1-24 hours after single dosing and ≥78% 1-24 hours after 7 days of repeated dosing. No inhibition was detected using blood from placebo subjects. Using matched GSK2798745 plasma levels, a pharmacokinetic/pharmacodynamic (PK/PD) relationship was calculated as 2.9 nM IC50, consistent with the 6.5 nM IC50 of GSK2798745 obtained from a rat in vivo PK/PD model of pulmonary edema after correcting for rat-to-human differences. These results indicate that circulating levels of GSK2798745 in the recently completed phase I/IIa trials were sufficient to block TRPV4 in lung vascular endothelial cells to a large extent, supporting this dosing regimen for assessing efficacy in HF. SIGNIFICANCE STATEMENT: In the absence of a suitable target engagement biomarker, we developed an ex vivo assay to predict the pharmacological activity of the transient receptor potential vanilloid 4 (TRPV4) blocker GSK2798745 in healthy volunteers and subjects with heart failure (HF) from phase I/IIa trials. The potency values from the ex vivo assay were consistent with those predicted from a rat in vivo pharmacokinetic/pharmacodynamic model of pulmonary edema, strongly suggesting that circulating levels of GSK2798745 were sufficient to robustly block TRPV4, supporting use of GSK2798745 for assessing efficacy in HF.


Assuntos
Benzimidazóis/sangue , Benzimidazóis/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Compostos de Espiro/sangue , Compostos de Espiro/farmacologia , Canais de Cátion TRPV/metabolismo , Animais , Benzimidazóis/farmacocinética , Impedância Elétrica , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Masculino , Terapia de Alvo Molecular , Ratos , Compostos de Espiro/farmacocinética , Canais de Cátion TRPV/antagonistas & inibidores
3.
Pulm Pharmacol Ther ; 64: 101977, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33189900

RESUMO

BACKGROUND: Acute Respiratory Distress Syndrome (ARDS) is associated with increased pulmonary-vascular permeability. In the lung, transient receptor potential vanilloid 4 (TRPV4), a Ca2+-permeable cation channel, is a regulator of endothelial permeability and pulmonary edema. We performed a Phase I, placebo-controlled, double-blind, randomized, parallel group, proof-of-mechanism study to investigate the effects of TRPV4 channel blocker, GSK2798745, on pulmonary-vascular barrier permeability using a model of lipopolysaccharide (LPS)-induced lung inflammation. METHODS: Healthy participants were randomized 1:1 to receive 2 single doses of GSK2798745 or placebo, 12 h apart. Two hours after the first dose, participants underwent bronchoscopy and segmental LPS instillation. Total protein concentration and neutrophil counts were measured in bronchoalveolar lavage (BAL) samples collected before and 24 h after LPS challenge, as markers of barrier permeability and inflammation, respectively. The primary endpoint was baseline adjusted total protein concentration in BAL at 24 h after LPS challenge. A Bayesian framework was used to estimate the posterior probability of any percentage reduction (GSK2798745 relative to placebo). Safety endpoints included the incidence of adverse events (AEs), vital signs, 12-lead electrocardiogram, clinical laboratory and haematological evaluations, and spirometry. RESULTS: Forty-seven participants were dosed and 45 completed the study (22 on GSK2798745 and 23 on placebo). Overall, GSK2798745 was well tolerated. Small reductions in mean baseline adjusted BAL total protein (~9%) and neutrophils (~7%) in the LPS-challenged segment were observed in the GSK2798745 group compared with the placebo group; however, the reductions did not meet pre-specified success criteria of at least a 95% posterior probability that the percentage reduction in the mean 24-h post LPS BAL total protein level (GSK2798745 relative to placebo) exceeded zero. Median plasma concentrations of GSK2798745 were predicted to inhibit TRPV4 on lung vascular endothelial cells by ~70-85% during the 24 h after LPS challenge; median urea-corrected BAL concentrations of GSK2798745 were 3.0- to 8.7-fold higher than those in plasma. CONCLUSIONS: GSK2798745 did not affect segmental LPS-induced elevation of BAL total protein or neutrophils, despite blood and lung exposures that were predicted to be efficacious. CLINICALTRIALS. GOV IDENTIFIER: NCT03511105.


Assuntos
Permeabilidade Capilar , Canais de Cátion TRPV , Teorema de Bayes , Benzimidazóis , Líquido da Lavagem Broncoalveolar , Células Endoteliais , Endotoxinas , Humanos , Lipopolissacarídeos , Pulmão , Neutrófilos , Permeabilidade , Compostos de Espiro
4.
Bioorg Med Chem Lett ; 30(8): 127022, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32063431

RESUMO

TRPV4 is a ubiquitously expressed, non-selective cation channel activated by a range of stimuli including hypotonicity, temperature, pH, stretch and endogenous ligands. Agents that modulate TRPV4 are sought as potential therapeutics for the treatment of many diseases including osteoarthritis, respiratory illnesses, gastrointestinal disorders, pain and congestive heart failure. In recent years, significant advances in TRPV4 drug discovery have been realized as at least seven novel TRPV4 agonist or antagonist templates were reported and the first selective TRPV4 antagonist was evaluated in early clinical trials.


Assuntos
Produtos Biológicos/farmacologia , Forbóis/farmacologia , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/antagonistas & inibidores , Produtos Biológicos/química , Descoberta de Drogas , Humanos , Modelos Moleculares , Estrutura Molecular , Forbóis/química
5.
Arterioscler Thromb Vasc Biol ; 32(8): 1809-16, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22723440

RESUMO

OBJECTIVE: Urotensin II (UII) is a potent vasoactive peptide that binds to the urotensin receptor-coupled receptor-14 (known as UT) and exerts a wide range of actions in humans and experimental animals. We tested the hypothesis that UII gene deletion or UT blockade ameliorate experimental atherosclerosis. METHODS AND RESULTS: We observed a significant reduction in weight gain, visceral fat, blood pressure, circulating plasma lipids, and proatherogenic cytokines and improvement of glucose tolerance in UII knockout mice compared with wild type (P<0.05). Deletion of UII after an apolipoprotein E knockout resulted in a significant reduction in serum cytokines, adipokines, and aortic atherosclerosis compared with apolipoprotein E knockout mice. Similarly, treatment of apolipoprotein E knockout mice fed on high-fat diet with the UT antagonist SB657510A reduced weight gain, visceral fat, and hyperlipidemia and improved glucose tolerance (P<0.05) and attenuated the initiation and progression of atherosclerosis. The UT antagonist also decreased aortic extracellular signal-regulated kinase 1/2 phosphorylation and oxidant formation and serum level of cytokines (P<0.05). CONCLUSIONS: These findings demonstrate for the first time the role of UII gene deletion in atherosclerosis and suggest that the use of pharmaceutical agents aimed at blocking the UII pathway may provide a novel approach in the treatment of atherosclerosis and its associated precursors such as obesity, hyperlipidemia, diabetes mellitus, and hypertension.


Assuntos
Aterosclerose/etiologia , Urotensinas/fisiologia , Animais , Apolipoproteínas E/fisiologia , Aterosclerose/prevenção & controle , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sulfonamidas/farmacologia , Urotensinas/sangue
6.
J Cardiovasc Pharmacol ; 61(4): 291-301, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23232840

RESUMO

Epoxyeicosatrienoic acids, substrates for soluble epoxide hydrolase (sEH), exhibit vasodilatory and antihypertrophic activities. Inhibitors of sEH might therefore hold promise as heart failure therapeutics. We examined the ability of sEH inhibitors GSK2188931 and GSK2256294 to modulate cardiac hypertrophy, fibrosis, and function after transverse aortic constriction (TAC) in rats and mice. GSK2188931 administration was initiated in rats 1 day before TAC, whereas GSK2256294 treatment was initiated in mice 2 weeks after TAC. Four weeks later, cardiovascular function was assessed, plasma was collected for drug and sEH biomarker concentrations, and left ventricle was isolated for messenger RNA and histological analyses. In rats, although GSK2188931 prevented TAC-mediated increases in certain genes associated with hypertrophy and fibrosis (α-skeletal actin and connective tissue growth factor), the compound failed to attenuate TAC-induced increases in left ventricle mass, posterior wall thickness, end-diastolic volume and pressure, and perivascular fibrosis. Similarly, in mice, GSK2256294 did not reverse cardiac remodeling or systolic dysfunction induced by TAC. Both compounds increased the sEH substrate/product (leukotoxin/leukotoxin diol) ratio, indicating sEH inhibition. In summary, sEH inhibition does not prevent cardiac remodeling or dysfunction after TAC. Thus, targeting sEH seems to be insufficient for reducing pressure overload hypertrophy.


Assuntos
Aorta/efeitos dos fármacos , Cicloexilaminas/farmacologia , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Piperidinas/farmacologia , Triazinas/farmacologia , Animais , Aorta/patologia , Cardiomegalia/tratamento farmacológico , Cardiomegalia/patologia , Constrição Patológica , Modelos Animais de Doenças , Fibrose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie , Remodelação Ventricular/efeitos dos fármacos
7.
Prostaglandins Other Lipid Mediat ; 104-105: 25-31, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23434473

RESUMO

Soluble epoxide hydrolase (sEH, EPHX2) metabolizes eicosanoid epoxides, including epoxyeicosatrienoic acids (EETs) to the corresponding dihydroxyeicosatrienoic acids (DHETs), and leukotoxin (LTX) to leukotoxin diol (LTX diol). EETs, endothelium-derived hyperpolarizing factors, exhibit potentially beneficial properties, including anti-inflammatory effects and vasodilation. A novel, potent, selective inhibitor of recombinant human, rat and mouse sEH, GSK2256294A, exhibited potent cell-based activity, a concentration-dependent inhibition of the conversion of 14,15-EET to 14,15-DHET in human, rat and mouse whole blood in vitro, and a dose-dependent increase in the LTX/LTX diol ratio in rat plasma following oral administration. Mice receiving 10 days of cigarette smoke exposure concomitant with oral administration of GSK2256294A exhibited significant, dose-dependent reductions in pulmonary leukocytes and keratinocyte chemoattractant (KC, CXCL1) levels. Mice receiving oral administration of GSK2256294A following 10 days of cigarette smoke exposure exhibited significant reductions in pulmonary leukocytes compared to vehicle-treated mice. These data indicate that GSK2256294A attenuates cigarette smoke-induced inflammation by both inhibiting its initiation and/or maintenance and promoting its resolution. Collectively, these data indicate that GSK2256294A would be an appropriate agent to evaluate the role of sEH in clinical studies, for example in diseases where cigarette smoke is a risk factor, such as chronic obstructive pulmonary disease (COPD) and cardiovascular disease.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Cicloexilaminas/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Leucócitos/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Triazinas/farmacologia , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/metabolismo , Administração Oral , Adulto , Animais , Quimiocina CXCL1/biossíntese , Relação Dose-Resposta a Droga , Epóxido Hidrolases/metabolismo , Exotoxinas/metabolismo , Feminino , Humanos , Inflamação/enzimologia , Inflamação/etiologia , Inflamação/patologia , Inflamação/prevenção & controle , Contagem de Leucócitos , Leucócitos/metabolismo , Leucócitos/patologia , Pulmão/enzimologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ácidos Esteáricos/metabolismo , Poluição por Fumaça de Tabaco/efeitos adversos
8.
Bioorg Med Chem Lett ; 23(12): 3584-8, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23664879

RESUMO

1-(1,3,5-Triazin-yl)piperidine-4-carboxamide inhibitors of soluble epoxide hydrolase were identified from high through-put screening using encoded library technology. The triazine heterocycle proved to be a critical functional group, essential for high potency and P450 selectivity. Phenyl group substitution was important for reducing clearance, and establishing good oral exposure. Based on this lead optimization work, 1-[4-methyl-6-(methylamino)-1,3,5-triazin-2-yl]-N-{[[4-bromo-2-(trifluoromethoxy)]-phenyl]methyl}-4-piperidinecarboxamide (27) was identified as a useful tool compound for in vivo investigation. Robust effects on a serum biomarker, 9, 10-epoxyoctadec-12(Z)-enoic acid (the epoxide derived from linoleic acid) were observed, which provided evidence of robust in vivo target engagement and the suitability of 27 as a tool compound for study in various disease models.


Assuntos
Amidas/química , Amidas/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Piperidinas/química , Piperidinas/farmacologia , Amidas/síntese química , Descoberta de Drogas , Inibidores Enzimáticos/síntese química , Epóxido Hidrolases/metabolismo , Humanos , Modelos Moleculares , Piperidinas/síntese química , Relação Estrutura-Atividade , Triazinas/síntese química , Triazinas/química , Triazinas/farmacologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-37966569

RESUMO

Administration of bolus intravenous fluids, common in pre-hospital and hospitalised patients, is associated with increased lung vascular permeability and mortality outside underlying disease states. In our laboratory, the induction of lung injury and oedema through rapid administration of intravenous fluid in rats was reduced by a non-specific antagonist of transient receptor potential vanilloid 4 (TRPV4) channels. The aims of this study were to determine the effect of selective TRPV4 inhibition on fluid-induced lung injury (FILI) and compare the potency of FILI inhibition to that of an established model of TRPV4 agonist-induced lung oedema. In a series of experiments, rats received specific TRPV4 inhibitor (GSK2789917) at high (15 µg/kg), medium (5 µg/kg) or low (2 µg/kg) dose or vehicle prior to induction of lung injury by intravenous infusion of TRPV4 agonist (GSK1016790) or saline. GSK1016790 significantly increased lung wet weight/body weight ratio by 96% and lung wet-to-dry weight ratio by 43% in vehicle pre-treated rats, which was inhibited by GSK2789917 in a dose-dependent manner (IC50 = 3 ng/mL). Similarly, in a single-dose study, bolus saline infusion significantly increased lung wet weight/body weight by 17% and lung wet-to-dry weight ratio by 15%, which was attenuated by high dose GSK2789917. However, in a final GSK2789917 dose-response study, inhibition did not reach significance and an inhibitory potency was not determined due to the lack of a clear dose-response. In the FILI model, TRPV4 may have a role in lung injury induced by rapid-fluid infusion, indicated by inconsistent amelioration with high dose TRPV4 antagonist.

10.
Expert Opin Ther Pat ; 31(9): 773-784, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33724130

RESUMO

Introduction: Transient receptor potential vanilloid 4 (TRPV4) is an ion channel that is widely expressed and is activated by numerous chemical, osmotic and mechanical stimuli. By modulating Ca2+ entry, TRPV4 regulates cellular signaling associated with a variety of (patho)physiological processes and is a target of interest for treatment of human diseases including heart failure, respiratory diseases, gastrointestinal disorders, dermatological conditions, pain and cancer, among others.Areas covered: This article reviews small molecule TRPV4 antagonists and new therapeutic use claims disclosed in the patent literature from 2015 to 2020, including applications covering the first potent and selective TRPV4 clinical candidate and other advanced chemotypes.Expert opinion: TRPV4 has proven to be a tractable target and significant progress in discovery of TRPV4 antagonists has been realized in recent years. Several unique chemical templates with drug-like properties inhibit the channel and show efficacy in models that suggest their potential for treatment of a variety of diseases. While compelling clinical efficacy has not yet been seen in the limited early studies conducted with GSK2798745, evaluation of TRPV4 antagonists in larger trials across several indications is warranted given the availability of high-quality candidates and the promise of therapeutic benefit based on pre-clinical evidence.


Assuntos
Benzimidazóis/farmacologia , Desenvolvimento de Medicamentos , Compostos de Espiro/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Animais , Descoberta de Drogas , Humanos , Patentes como Assunto , Canais de Cátion TRPV/metabolismo
11.
ACS Med Chem Lett ; 12(9): 1498-1502, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34531959

RESUMO

GSK2798745, an antagonist of the transient receptor potential vanilloid 4 (TRPV4) ion channel, was recently investigated in clinical trials for the treatment of cardiac and respiratory diseases. Human plasma and urine samples collected from healthy volunteers following oral administration were analyzed to identify circulating and excreted metabolites of the parent drug. One major circulating metabolite (1) was found in pooled human plasma samples, accounting for approximately half of the observed drug-related material. Isolation of metabolite 1 from urine samples followed by MS and NMR studies led to a putative structural assignment of 1 where hydroxylation of GSK2798745 occurred on the central ring, producing a penta-substituted cyclohexane structure containing three stereocenters. Two unique chemical syntheses of the proposed structure were developed to confirm the identity of metabolite 1 and provide access to gram quantities for biological characterization.

12.
ERJ Open Res ; 7(3)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34350286

RESUMO

OBJECTIVE: Airway sensory nerves involved in the cough reflex are activated by adenosine triphosphate (ATP) agonism of P2X purinoceptor 3 (P2X3) receptors. Transient receptor potential vanilloid 4 (TRPV4) channel activation causes ATP release from airway cells, and it is hypothesised that a TRPV4-ATP-P2X3 axis contributes to chronic cough. An adaptive study was run to determine if TRPV4 inhibition, using the selective TRPV4 channel blocker GSK2798745, was effective in reducing cough. METHODS: A two-period randomised, double blinded, placebo-controlled crossover study was designed with interim analyses for futility and sample size adjustment. Refractory chronic cough patients received either GSK2798745 or placebo once daily for 7 days with a washout between treatments. Pharmacokinetic samples were collected for analysis of GSK2798745 at end of study. The primary end-point was total cough counts assessed objectively during day-time hours (10 h) following 7 days of dosing. RESULTS: Interim analysis was performed after 12 participants completed both treatment periods. This showed a 32% increase in cough counts on Day 7 for GSK2798745 compared to placebo; the pre-defined negative criteria for the study were met and the study was stopped. At this point 17 participants had been enrolled (mean 61 years; 88% female), and 15 had completed the study. Final study results for posterior median cough counts showed a 34% (90% credible interval: -3%, +85%) numerical increase for GSK2798745 compared to placebo. CONCLUSION: There was no evidence of an anti-tussive effect of GSK2798745. The study design allowed the decision on lack of efficacy to be made with minimal participant exposure to the investigational drug.

13.
J Cardiovasc Pharmacol ; 56(2): 147-55, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20714241

RESUMO

BACKGROUND: Hypoxia inducible factors (HIFs) are transcription factors that are regulated by HIF-prolyl 4-hydroxylases (PHDs) in response to changes in oxygen tension. Once activated, HIFs play an important role in angiogenesis, erythropoiesis, proliferation, cell survival, inflammation, and energy metabolism. We hypothesized that GSK360A, a novel orally active HIF-PHD inhibitor, could facilitate local and systemic HIF-1 alpha signaling and protect the failing heart after myocardial infarction (MI). METHODS AND RESULTS: GSK360A is a potent (nanomolar) inhibitor of HIF-PHDs (PHD1>PHD2 = PHD3) capable of activating the HIF-1 alpha pathway in a variety of cell types including neonatal rat ventricular myocytes and H9C2 cells. Male rats treated orally with GSK360A (30 mg x kg x d) had a sustained elevation in circulating levels of erythropoietin and hemoglobin and increased hemoxygenase-1 expression in the heart and skeletal muscle. In a rat model of established heart failure with systolic dysfunction induced by ligation of left anterior descending coronary artery, chronic treatment with GSK360A for 28 days prevented the progressive reduction in ejection fraction, ventricular dilation, and increased lung weight, which were observed in the vehicle-treated animals, for up to 3 months. In addition, the microvascular density in the periinfarct region was increased (>2-fold) in GSK360A-treated animals. Treatment was well tolerated (survival was 89% in the GSK360A group vs. 82% in the placebo group). CONCLUSIONS: Chronic post-myocardial infarction treatment with a selective HIF PHD inhibitor (GSK360A) exerts systemic and local effects by stabilizing HIF-1 alpha signaling and improves long-term ventricular function, remodeling, and vascularity in a model of established ventricular dysfunction. These results suggest that HIF-PHD inhibitors may be suitable for the treatment of post-MI remodeling and heart failure.


Assuntos
Vasos Coronários/efeitos dos fármacos , Glicina/análogos & derivados , Fator 1 Induzível por Hipóxia/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Pró-Colágeno-Prolina Dioxigenase/antagonistas & inibidores , Quinolonas/farmacologia , Remodelação Ventricular/efeitos dos fármacos , Animais , Linhagem Celular , Vasos Coronários/metabolismo , Vasos Coronários/fisiopatologia , Glicina/farmacologia , Hemodinâmica/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Ratos , Ratos Endogâmicos Lew , Ratos Sprague-Dawley
14.
Eur J Heart Fail ; 22(9): 1641-1645, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32227554

RESUMO

AIMS: Lung congestion in patients with heart failure (HF) has traditionally been treated using interventions that reduce pulmonary capillary hydrostatic pressure. The transient receptor potential vanilloid 4 (TRPV4) channel regulates fluid transit across the pulmonary capillary-interface, and represents a novel target to reduce lung water, independent of pulmonary capillary hypertension. This pilot study examined the safety and potential efficacy of TRPV4 blockade as a novel treatment for HF. METHODS AND RESULTS: In this randomized, double-blind, placebo-controlled crossover pilot trial, 11 subjects with chronic, compensated HF were treated with a novel TRPV4 antagonist (GSK2798745) or placebo. The primary endpoint was lung diffusing capacity for carbon monoxide (DLCO ) after 7 days of treatment with GSK2798745 as compared to placebo. Secondary endpoints included additional diffusion parameters, spirometry and safety assessments. Compared to placebo, treatment with GSK2798745 resulted in a trend to improvement in DLCO (placebo: -0.336 mL/mmHg/min; GSK2798745: +0.458 mL/mmHg/min; treatment difference: +0.793 mL/mmHg/min; 95% confidence interval: -0.925 to 2.512) that was not statistically significant. GSK2798745 was well-tolerated with no serious adverse events. CONCLUSION: In this pilot trial, GSK2798745 was found to be safe and well-tolerated, with a trend toward improved gas transfer. Further investigation is warranted in larger studies to determine whether treatment with TRPV4 antagonists or alternative treatments targeting capillary permeability might be effective to improve lung congestion, pulmonary gas transfer and clinical status in patients with acute or chronic HF.


Assuntos
Benzimidazóis/uso terapêutico , Permeabilidade Capilar , Insuficiência Cardíaca , Compostos de Espiro/uso terapêutico , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Pulmão , Projetos Piloto
15.
J Pharmacol Exp Ther ; 328(1): 231-9, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18836067

RESUMO

Epoxy- and dihydroxy-eicosatrienoic acids (EETs and DHETs) are vasoactive cytochrome P450 metabolites of arachidonic acid. Interestingly, however, the mechanism(s) by which EETs/DHETs mediate smooth muscle relaxation remains unclear. In contrast to previous reports, where dilation was purportedly large-conductance Ca(2+)-activated K(+) (BK(Ca)) and/or transient receptor potential cation channel, subfamily V, member 4 (TRPV4) channel-mediated, 14,15-EET-induced vasodilation [reversal of contractile tone established with the thromboxane receptor (TP) agonist 15-hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic acid (U-46619)] was unaltered in BK(Ca) and TRPV4 knockout mouse isolated aortae compared with wild-type controls, indicating a significant BK(Ca)/TRPV4-resistant mechanism. Whereas all EET and DHET regioisomers reversed U-46619 contraction in rat aortae and mouse mesenteric resistance arteries, these eicosanoids failed to alter phenylephrine-induced contraction, suggesting that they mediated dilation via a "TP-selective" mechanism. Competitive TP antagonism was also observed in nonvascular tissue, including rat fundus and tertiary bronchus, indicating that the effect is not specific to blood vessels. Such effects were TP-selective because 14,15-EET failed to inhibit "non-TP" prostanoid receptor-mediated function in multiple cell/tissue-based assays (K(b) > 10 microM). In accordance, 14,15-EET inhibited specific [(3)H]7-(3-((2-((phenylamino)carbonyl)hydrazino)-methyl)-7-oxabicyclo(2.2.1)hept-2-yl)-5-heptenoic acid (SQ-29548) binding to human recombinant TP receptor, with a K(i) value of 3.2 microM, and it showed weaker affinity for non-TP prostanoid receptors, including DP, FP, EP(1-4), and IP receptors (K(i) values of 6.1, 5.3, 42.6, 19.7, 13.2, 20.2, and >25 microM, respectively) and no appreciable affinity (K(i) values >10 microM) for a diverse array of pharmacologically distinct receptors, including the leukotriene receptors Cys-LT(1/2) and BLT(1). As such, EETs/DHETs represent a unique class of "endogenous" G protein-coupled receptor competitive antagonists, inducing vasodilation via direct TP inhibition. Thus, EETs/DHETs represent novel autoregulatory agents, directly modulating the actions of cyclooxygenase-derived eicosanoids following arachidonic acid mobilization.


Assuntos
Ácido 8,11,14-Eicosatrienoico/farmacologia , Aorta Torácica/fisiologia , Vasodilatação/fisiologia , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Animais , Aorta Torácica/efeitos dos fármacos , Ácidos Araquidônicos/farmacologia , Cobaias , Ácidos Hidroxieicosatetraenoicos/farmacologia , Masculino , Camundongos , Camundongos Knockout , Ratos , Ratos Sprague-Dawley , Receptores de Tromboxanos/agonistas , Receptores de Tromboxanos/efeitos dos fármacos , Receptores de Tromboxanos/fisiologia , Circulação Esplâncnica/efeitos dos fármacos , Circulação Esplâncnica/fisiologia , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/fisiologia , Traqueia/efeitos dos fármacos , Traqueia/fisiologia , Resistência Vascular/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia , Vasodilatação/efeitos dos fármacos
16.
J Pharmacol Exp Ther ; 330(3): 964-70, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19556450

RESUMO

The evidence is compelling for a role of inflammation in cardiovascular diseases; however, the chronic use of anti-inflammatory drugs for these indications has been disappointing. The recent study compares the effects of two anti-inflammatory agents [cyclooxygenase 2 (COX2) and p38 inhibitors] in a model of cardiovascular disease. The vascular, renal, and cardiac effects of 4-(4-methylsulfonylphenyl)-3-phenyl-5H-furan-2-one (rofecoxib; a COX2 inhibitor) and 6-{5-[(cyclopropylamino)carbonyl]-3-fluoro-2-methylphenyl}-N-(2,2-dimethylpropyl)-3-pyridinecarboxamide [GSK-AHAB, a selective p38 mitogen-activated protein kinase (MAPK) inhibitor], were examined in the spontaneously hypertensive stroke-prone rat (SHR-SP). In SHR-SPs receiving a salt-fat diet (SFD), chronic treatment with GSK-AHAB significantly and dose-dependently improved survival, endothelial-dependent and -independent vascular relaxation, and indices of renal function, and it attenuated dyslipidemia, hypertension, cardiac remodeling, plasma renin activity (PRA), aldosterone, and interleukin-1beta (IL-1beta). In contrast, chronic treatment with a COX2-selective dose of rofecoxib exaggerated the harmful effects of the SFD, i.e., increasing vascular and renal dysfunction, dyslipidemia, hypertension, cardiac hypertrophy, PRA, aldosterone, and IL-1beta. The protective effects of a p38 MAPK inhibitor are clearly distinct from the deleterious effects of a selective COX2 inhibitor in the SHR-SP and suggest that anti-inflammatory agents can have differential effects in cardiovascular disease. The results also suggest a method for evaluating long-term cardiovascular efficacy and safety.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclopropanos/farmacologia , Inibidores Enzimáticos/farmacologia , Lactonas/farmacologia , Piridinas/farmacologia , Sulfonas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Aldosterona/sangue , Animais , Pressão Sanguínea/efeitos dos fármacos , Doenças Cardiovasculares/enzimologia , Ciclo-Oxigenase 1/sangue , Ciclo-Oxigenase 2/sangue , Citocinas/antagonistas & inibidores , Eletrocardiografia/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Interleucina-1beta/sangue , Testes de Função Renal , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Ratos , Ratos Endogâmicos SHR , Renina/sangue , Vasodilatação/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
17.
J Med Chem ; 62(20): 9270-9280, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31532662

RESUMO

GSK3527497, a preclinical candidate for the inhibition of TRPV4, was identified starting from the previously reported pyrrolidine sulfonamide TRPV4 inhibitors 1 and 2. Optimization of projected human dose was accomplished by specifically focusing on in vivo pharmacokinetic parameters CLu, Vdssu, and MRT. We highlight the use of conformational changes as a novel approach to modulate Vdssu and present results that suggest that molecular-shape-dependent binding to tissue components governs Vdssu in addition to bulk physicochemical properties. Optimization of CLu within the series was guided by in vitro metabolite identification, and the poor FaSSIF solubility imparted by the crystalline properties of the pyrrolidine diol scaffold was improved by the introduction of a charged moiety to enable excellent exposure from high crystalline doses. GSK3527497 is a preclinical candidate suitable for oral and iv administration that is projected to inhibit TRPV4 effectively in patients from a low daily clinical dose.


Assuntos
Pirrolidinas/química , Sulfonamidas/química , Canais de Cátion TRPV/antagonistas & inibidores , Administração Oral , Animais , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Humanos , Concentração Inibidora 50 , Pirrolidinas/metabolismo , Ratos , Ratos Sprague-Dawley , Solubilidade , Relação Estrutura-Atividade , Sulfonamidas/metabolismo , Canais de Cátion TRPV/metabolismo
18.
ACS Med Chem Lett ; 10(8): 1228-1233, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31413810

RESUMO

GSK2798745, a clinical candidate, was identified as an inhibitor of the transient receptor potential vanilloid 4 (TRPV4) ion channel for the treatment of pulmonary edema associated with congestive heart failure. We discuss the lead optimization of this novel spirocarbamate series and specifically focus on our strategies and solutions for achieving desirable potency, rat pharmacokinetics, and physicochemical properties. We highlight the use of conformational bias to deliver potency and optimization of volume of distribution and unbound clearance to enable desirable in vivo mean residence times.

19.
J Pharmacol Exp Ther ; 326(2): 443-52, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18499744

RESUMO

The transient receptor potential (TRP) vanilloid subtype 4 (V4) is a nonselective cation channel that exhibits polymodal activation and is expressed in the endothelium, where it contributes to intracellular Ca2+ homeostasis and regulation of cell volume. The purpose of the present study was to evaluate the systemic cardiovascular effects of GSK1016790A, a novel TRPV4 activator, and to examine its mechanism of action. In three species (mouse, rat, and dog), the i.v. administration of GSK1016790A induced a dose-dependent reduction in blood pressure, followed by profound circulatory collapse. In contrast, GSK1016790A had no acute cardiovascular effects in the TRPV4-/- null mouse. Hemodynamic analyses in the dog and rat demonstrate a profound reduction in cardiac output. However, GSK1016790A had no effect on rate or contractility in the isolated, buffer-perfused rat heart, and it produced potent endothelial-dependent relaxation of rodent-isolated vascular ring segments that were abolished by nitric-oxide synthase (NOS) inhibition (N-nitro-L-arginine methyl ester; L-NAME), ruthenium red, and endothelial NOS (eNOS) gene deletion. However, the in vivo circulatory collapse was not altered by NOS inhibition (L-NAME) or eNOS gene deletion but was associated with (concentration and time appropriate) profound vascular leakage and tissue hemorrhage in the lung, intestine, and kidney. TRPV4 immunoreactivity was localized in the endothelium and epithelium in the affected organs. GSK1016790A potently induced rapid electrophysiological and morphological changes (retraction/condensation) in cultured endothelial cells. In summary, inappropriate activation of TRPV4 produces acute circulatory collapse associated with endothelial activation/injury and failure of the pulmonary microvascular permeability barrier. It will be important to determine the role of TRPV4 in disorders associated with edema and microvascular congestion.


Assuntos
Aorta Torácica/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Leucina/análogos & derivados , Sulfonamidas/efeitos adversos , Canais de Cátion TRPV/agonistas , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Aorta Torácica/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Cães , Relação Dose-Resposta a Droga , Endotélio Vascular/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Leucina/efeitos adversos , Leucina/farmacocinética , Masculino , Camundongos , Camundongos Knockout , Estrutura Molecular , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Sulfonamidas/farmacocinética , Canais de Cátion TRPV/genética , Vasoconstrição/efeitos dos fármacos
20.
Bioorg Med Chem Lett ; 18(9): 2860-4, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18420409

RESUMO

A series of 2-aminomethyl piperidines has been discovered as novel urotensin-II receptor antagonists. The synthesis, initial structure-activity relationships, and optimization of the initial hit that resulted in the identification of potent, cross-species active, and functional urotensin-II receptor antagonists such as 1a and 11a are described.


Assuntos
Metilaminas/farmacologia , Piperidinas/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Vasoconstritores/farmacologia , Sítios de Ligação , Humanos , Metilaminas/síntese química , Modelos Químicos , Piperidinas/síntese química , Estereoisomerismo , Relação Estrutura-Atividade , Vasoconstritores/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA