RESUMO
BACKGROUND: Exposure to wood smoke has been shown to contribute to adverse respiratory health effects including airway infections, but the underlying mechanisms are unclear. A preceding study failed to confirm any acute inflammation or cell influx in bronchial wash (BW) or bronchoalveolar lavage (BAL) 24 h after wood smoke exposure but showed unexpected reductions in leukocyte numbers. The present study was performed to investigate responses at an earlier phase, regarding potential development of acute inflammation, as well as indications of cytotoxicity. METHODS: In a double-blind, randomised crossover study, 14 healthy participants were exposed for 2 h to filtered air and diluted wood smoke from incomplete wood log combustion in a common wood stove with a mean particulate matter concentration of 409 µg/m3. Bronchoscopy with BW and BAL was performed 6 h after exposure. Differential cell counts, assessment of DNA-damage and ex vivo analysis of phagocytic function of phagocytosing BAL cells were performed. Wood smoke particles were also collected for in vitro toxicological analyses using bronchial epithelial cells (BEAS-2B) and alveolar type II-like cells (A549). RESULTS: Exposure to wood smoke increased BAL lactate dehydrogenase (LDH) (p = 0.04) and reduced the ex vivo alveolar macrophage phagocytic capacity (p = 0.03) and viability (p = 0.02) vs. filtered air. BAL eosinophil numbers were increased after wood smoke (p = 0.02), while other cell types were unaffected in BW and BAL. In vitro exposure to wood smoke particles confirmed increased DNA-damage, decreased metabolic activity and cell cycle disturbances. CONCLUSIONS: Exposure to wood smoke from incomplete combustion did not induce any acute airway inflammatory cell influx at 6 h, apart from eosinophils. However, there were indications of a cytotoxic reaction with increased LDH, reduced cell viability and impaired alveolar macrophage phagocytic capacity. These findings are in accordance with earlier bronchoscopy findings at 24 h and may provide evidence for the increased susceptibility to infections by biomass smoke exposure, reported in population-based studies.
Assuntos
Fumaça , Madeira , Humanos , Fumaça/efeitos adversos , Macrófagos , Fagocitose , Inflamação/induzido quimicamente , DNA , Líquido da Lavagem Broncoalveolar , Exposição por Inalação/efeitos adversosRESUMO
BACKGROUND: Transcriptomic changes in patients who respond clinically to biological therapies may identify responses in other tissues or diseases. OBJECTIVE: We sought to determine whether a disease signature identified in atopic dermatitis (AD) is seen in adults with severe asthma and whether a transcriptomic signature for patients with AD who respond clinically to anti-IL-22 (fezakinumab [FZ]) is enriched in severe asthma. METHODS: An AD disease signature was obtained from analysis of differentially expressed genes between AD lesional and nonlesional skin biopsies. Differentially expressed genes from lesional skin from therapeutic superresponders before and after 12 weeks of FZ treatment defined the FZ-response signature. Gene set variation analysis was used to produce enrichment scores of AD and FZ-response signatures in the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes asthma cohort. RESULTS: The AD disease signature (112 upregulated genes) encompassing inflammatory, T-cell, TH2, and TH17/TH22 pathways was enriched in the blood and sputum of patients with asthma with increasing severity. Patients with asthma with sputum neutrophilia and mixed granulocyte phenotypes were the most enriched (P < .05). The FZ-response signature (296 downregulated genes) was enriched in asthmatic blood (P < .05) and particularly in neutrophilic and mixed granulocytic sputum (P < .05). These data were confirmed in sputum of the Airway Disease Endotyping for Personalized Therapeutics cohort. IL-22 mRNA across tissues did not correlate with FZ-response enrichment scores, but this response signature correlated with TH22/IL-22 pathways. CONCLUSIONS: The FZ-response signature in AD identifies severe neutrophilic asthmatic patients as potential responders to FZ therapy. This approach will help identify patients for future asthma clinical trials of drugs used successfully in other chronic diseases.
Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Asma/tratamento farmacológico , Dermatite Atópica/tratamento farmacológico , Fármacos Dermatológicos/uso terapêutico , Interleucinas/antagonistas & inibidores , Adulto , Idoso , Asma/genética , Asma/imunologia , Brônquios/imunologia , Dermatite Atópica/genética , Dermatite Atópica/imunologia , Feminino , Humanos , Imunoglobulina E/sangue , Interleucinas/genética , Interleucinas/imunologia , Masculino , Pessoa de Meia-Idade , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Proteoma/efeitos dos fármacos , Índice de Gravidade de Doença , Pele/imunologia , Escarro/imunologia , Transcriptoma/efeitos dos fármacos , Resultado do Tratamento , Interleucina 22RESUMO
DNA methylation patterns in chronic pulmonary obstructive disease (COPD) might offer new insights into disease pathogenesis. To assess methylation profiles in the main COPD target organ, we performed an epigenome-wide association study on BAL cells. Bronchoscopies were performed in 18 subjects with COPD and 15 control subjects (ex- and current smokers). DNA methylation was measured using the Illumina MethylationEPIC BeadChip Kit, covering more than 850,000 CpGs. Differentially methylated positions (DMPs) were examined for 1) enrichment in pathways and functional gene relationships using the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology, 2) accelerated aging using Horvath's epigenetic clock, 3) correlation with gene expression, and 4) colocalization with genetic variation. We found 1,155 Bonferroni-significant (P < 6.74 × 10-8) DMPs associated with COPD, many with large effect sizes. Functional analysis identified biologically plausible pathways and gene relationships, including enrichment for transcription factor activity. Strong correlation was found between DNA methylation and chronological age but not between COPD and accelerated aging. For 79 unique DMPs, DNA methylation correlated significantly with gene expression in BAL cells. Thirty-nine percent of DMPs were colocalized with COPD-associated SNPs. To the best of our knowledge, this is the first epigenome-wide association study of COPD on BAL cells, and our analyses revealed many differential methylation sites. Integration with mRNA data showed a strong functional readout for relevant genes, identifying sites where DNA methylation might directly affect expression. Almost half of DMPs were colocated with SNPs identified in previous genome-wide association studies of COPD, suggesting joint genetic and epigenetic pathways related to disease.
Assuntos
Epigenoma , Doença Pulmonar Obstrutiva Crônica , Metilação de DNA/genética , Epigênese Genética , Estudo de Associação Genômica Ampla , Humanos , Pulmão , Doença Pulmonar Obstrutiva Crônica/genéticaRESUMO
INTRODUCTION: Asthma is a heterogeneous disease with poorly defined phenotypes. Patients with severe asthma often receive multiple treatments including oral corticosteroids (OCS). Treatment may modify the observed metabotype, rendering it challenging to investigate underlying disease mechanisms. Here, we aimed to identify dysregulated metabolic processes in relation to asthma severity and medication. METHODS: Baseline urine was collected prospectively from healthy participants (n=100), patients with mild-to-moderate asthma (n=87) and patients with severe asthma (n=418) in the cross-sectional U-BIOPRED cohort; 12-18-month longitudinal samples were collected from patients with severe asthma (n=305). Metabolomics data were acquired using high-resolution mass spectrometry and analysed using univariate and multivariate methods. RESULTS: A total of 90 metabolites were identified, with 40 significantly altered (p<0.05, false discovery rate <0.05) in severe asthma and 23 by OCS use. Multivariate modelling showed that observed metabotypes in healthy participants and patients with mild-to-moderate asthma differed significantly from those in patients with severe asthma (p=2.6×10-20), OCS-treated asthmatic patients differed significantly from non-treated patients (p=9.5×10-4), and longitudinal metabotypes demonstrated temporal stability. Carnitine levels evidenced the strongest OCS-independent decrease in severe asthma. Reduced carnitine levels were associated with mitochondrial dysfunction via decreases in pathway enrichment scores of fatty acid metabolism and reduced expression of the carnitine transporter SLC22A5 in sputum and bronchial brushings. CONCLUSIONS: This is the first large-scale study to delineate disease- and OCS-associated metabolic differences in asthma. The widespread associations with different therapies upon the observed metabotypes demonstrate the need to evaluate potential modulating effects on a treatment- and metabolite-specific basis. Altered carnitine metabolism is a potentially actionable therapeutic target that is independent of OCS treatment, highlighting the role of mitochondrial dysfunction in severe asthma.
Assuntos
Antiasmáticos , Asma , Corticosteroides/uso terapêutico , Antiasmáticos/uso terapêutico , Asma/genética , Carnitina/uso terapêutico , Estudos Transversais , Humanos , Índice de Gravidade de Doença , Membro 5 da Família 22 de Carreadores de SolutoRESUMO
BACKGROUND: Evidence of the role of interactions between air pollution and pollen exposure in subjects with allergic asthma is limited and need further exploration to promote adequate preventive measures. The objective of this study was to assess effects of exposure to ambient air pollution and birch pollen on exacerbation of respiratory symptoms in subjects with asthma and allergy to birch. METHODS: Thirty-seven subjects from two Swedish cities (Gothenburg and Umeå) with large variation in exposure to both birch-pollen and air pollutants, participated in the study. All subjects had confirmed allergy to birch and self-reported physician-diagnosed asthma. The subjects recorded respiratory symptoms such as rhinitis or eye irritation, dry cough, dyspnoea, the use of any asthma or allergy medication and peak respiratory flow (PEF), daily for five consecutive weeks during two separate pollen seasons and a control season without pollen. Nitrogen oxides (NOx), ozone (O3), particulate matter (PM2.5), birch pollen counts, and meteorological data were obtained from an urban background monitoring stations in the study city centres. The data were analysed using linear mixed effects models. RESULTS: During pollen seasons all symptoms and medication use were higher, and PEF was reduced in the subjects. In regression analysis, exposure to pollen at lags 0 to 2 days, and lags 0 to 6 days was associated with increased ORs of symptoms and decreased RRs for PEF. Pollen and air pollution interacted in some cases; during low pollen exposure, there were no associations between air pollution and symptoms, but during high pollen exposure, O3 concentrations were associated with increased OR of rhinitis or eye irritation, and PM2.5 concentrations were associated with increased ORs of rhinitis or eye irritation, dyspnea and increased use of allergy medication. CONCLUSIONS: Pollen and air pollutants interacted to increase the effect of air pollution on respiratory symptoms in allergic asthma. Implementing the results from this study, advisories for individuals with allergic asthma could be improved, minimizing the morbidities associated with the condition.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Asma , Hipersensibilidade , Rinite Alérgica Sazonal , Rinite , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Asma/tratamento farmacológico , Asma/epidemiologia , Betula , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise , Pólen/efeitos adversos , Estações do Ano , Suécia/epidemiologiaRESUMO
Rationale: New approaches are needed to guide personalized treatment of asthma.Objectives: To test if urinary eicosanoid metabolites can direct asthma phenotyping.Methods: Urinary metabolites of prostaglandins (PGs), cysteinyl leukotrienes (CysLTs), and isoprostanes were quantified in the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Diseases Outcomes) study including 86 adults with mild-to-moderate asthma (MMA), 411 with severe asthma (SA), and 100 healthy control participants. Validation was performed internally in 302 participants with SA followed up after 12-18 months and externally in 95 adolescents with asthma.Measurement and Main Results: Metabolite concentrations in healthy control participants were unrelated to age, body mass index, and sex, except for the PGE2 pathway. Eicosanoid concentrations were generally greater in participants with MMA relative to healthy control participants, with further elevations in participants with SA. However, PGE2 metabolite concentrations were either the same or lower in male nonsmokers with asthma than in healthy control participants. Metabolite concentrations were unchanged in those with asthma who adhered to oral corticosteroid treatment as documented by urinary prednisolone detection, whereas those with SA treated with omalizumab had lower concentrations of LTE4 and the PGD2 metabolite 2,3-dinor-11ß-PGF2α. High concentrations of LTE4 and PGD2 metabolites were associated with lower lung function and increased amounts of exhaled nitric oxide and eosinophil markers in blood, sputum, and urine in U-BIOPRED participants and in adolescents with asthma. These type 2 (T2) asthma associations were reproduced in the follow-up visit of the U-BIOPRED study and were found to be as sensitive to detect T2 inflammation as the established biomarkers.Conclusions: Monitoring of urinary eicosanoids can identify T2 asthma and introduces a new noninvasive approach for molecular phenotyping of adult and adolescent asthma.Clinical trial registered with www.clinicaltrials.gov (NCT01976767).
Assuntos
Asma/metabolismo , Biomarcadores/urina , Inflamação/metabolismo , Leucotrieno E4/metabolismo , Leucotrieno E4/urina , Prostaglandinas/metabolismo , Prostaglandinas/urina , Adulto , Asma/fisiopatologia , Feminino , Humanos , Inflamação/fisiopatologia , Masculino , Pessoa de Meia-IdadeRESUMO
Disease recurrence in surgically treated lung adenocarcinoma (AC) remains high. New approaches for risk stratification beyond tumor stage are needed. Gene expression-based AC subtypes such as the Cancer Genome Atlas Network (TCGA) terminal-respiratory unit (TRU), proximal-inflammatory (PI) and proximal-proliferative (PP) subtypes have been associated with prognosis, but show methodological limitations for robust clinical use. We aimed to derive a platform independent single sample predictor (SSP) for molecular subtype assignment and risk stratification that could function in a clinical setting. Two-class (TRU/nonTRU=SSP2) and three-class (TRU/PP/PI=SSP3) SSPs using the AIMS algorithm were trained in 1655 ACs (n = 9659 genes) from public repositories vs TCGA centroid subtypes. Validation and survival analysis were performed in 977 patients using overall survival (OS) and distant metastasis-free survival (DMFS) as endpoints. In the validation cohort, SSP2 and SSP3 showed accuracies of 0.85 and 0.81, respectively. SSPs captured relevant biology previously associated with the TCGA subtypes and were associated with prognosis. In survival analysis, OS and DMFS for cases discordantly classified between TCGA and SSP2 favored the SSP2 classification. In resected Stage I patients, SSP2 identified TRU-cases with better OS (hazard ratio [HR] = 0.30; 95% confidence interval [CI] = 0.18-0.49) and DMFS (TRU HR = 0.52; 95% CI = 0.33-0.83) independent of age, Stage IA/IB and gender. SSP2 was transformed into a NanoString nCounter assay and tested in 44 Stage I patients using RNA from formalin-fixed tissue, providing prognostic stratification (relapse-free interval, HR = 3.2; 95% CI = 1.2-8.8). In conclusion, gene expression-based SSPs can provide molecular subtype and independent prognostic information in early-stage lung ACs. SSPs may overcome critical limitations in the applicability of gene signatures in lung cancer.
Assuntos
Adenocarcinoma de Pulmão/diagnóstico , Biomarcadores Tumorais/genética , Neoplasias Pulmonares/diagnóstico , Pulmão/patologia , Recidiva Local de Neoplasia/epidemiologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/cirurgia , Algoritmos , Conjuntos de Dados como Assunto , Intervalo Livre de Doença , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Pulmão/cirurgia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/cirurgia , Masculino , Modelos Genéticos , Recidiva Local de Neoplasia/genética , Estadiamento de Neoplasias , Valor Preditivo dos Testes , Prognóstico , Medição de Risco/métodos , Fatores de RiscoRESUMO
BACKGROUND: Differences in the expression of regulatory T cells (Tregs) have been suggested to explain why some smokers develop COPD and some do not. Upregulation of Tregs in response to smoking would restrain airway inflammation and thus the development of COPD; while the absense of such upregulation would over time lead to chronic inflammation and COPD. We hypothesized that-among COPD patients-the same mechanism would affect rate of decline in lung function; specifically, that a decreased expression of Tregs would be associated with a more rapid decline in FEV1. METHODS: Bronchoscopy with BAL was performed in 52 subjects recruited from the longitudinal OLIN COPD study; 12 with COPD and a rapid decline in lung function (loss of FEV1 ≥ 60 ml/year), 10 with COPD and a non-rapid decline in lung function (loss of FEV1 ≤ 30 ml/year), 15 current and ex-smokers and 15 non-smokers with normal lung function. BAL lymphocyte subsets were determined using flow cytometry. RESULTS: The proportions of Tregs with regulatory function (FoxP3+/CD4+CD25bright) were significantly lower in COPD subjects with a rapid decline in lung function compared to those with a non-rapid decline (p = 0.019). This result was confirmed in a mixed model regression analysis in which adjustments for inhaled corticosteroid usage, smoking, sex and age were evaluated. No significant difference was found between COPD subjects and smokers or non-smokers with normal lung function. CONCLUSIONS: COPD subjects with a rapid decline in lung function had lower proportions of T cells with regulatory function in BAL fluid, suggesting that an inability to suppress the inflammatory response following smoking might lead to a more rapid decline in FEV1. Trial registration Clinicaltrials.gov identifier NCT02729220.
Assuntos
Pulmão/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Fumar/efeitos adversos , Linfócitos T Reguladores/imunologia , Idoso , Broncoscopia , Contagem de Linfócito CD4 , Estudos de Casos e Controles , Estudos Transversais , Progressão da Doença , Feminino , Volume Expiratório Forçado , Fatores de Transcrição Forkhead/análise , Humanos , Imunofenotipagem , Subunidade alfa de Receptor de Interleucina-2/análise , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Fumar/imunologia , Fumar/fisiopatologiaRESUMO
INTRODUCTION: At present, there are few methods available for monitoring respiratory diseases affecting distal airways. Bronchoscopy is the golden standard for sampling the lower airways. The recently developed method for collecting non-volatile material from exhaled air - PExA (Particles in Exhaled air) is a promising new tool, but no direct comparison between the two methods has yet been performed. The aim of the present study was to compare sampling using PExA with bronchial wash (BW) representing the larger more proximal airways and broncho-alveolar lavage (BAL) representing the distal airways. METHODS: 15 healthy non-smoking subjects (7 female/8 male), age 28 ± 4 years, with normal lung function were included in the study. PExA-sampling (2 × 250 ng particles) and bronchoscopy with BW (2 × 20 ml) and BAL (3 × 60 ml sterile saline) was performed. Albumin and Surfactant Protein A (SP-A) were analyzed with ELISA, and analyses of correlation were performed. RESULTS: A significant association was found between BAL-fluid albumin and PExA-albumin (rs:0.65 p = 0.01). There was also an association between SP-A in PExA and BAL, when corrected for albumin concentration (rs:0.61, p = 0.015). When correlating concentrations of albumin and SP-A in bronchial wash and PExA respectively, no associations were found. CONCLUSIONS: This is the first direct comparison between the bronchoscopy-based BW/BAL-fluids and material collected using the PExA methodology. Both albumin and albumin-corrected SP-A concentrations were significantly associated between BAL and PExA, however, no such association was found in either marker between BW and PExA. These results indicate that the PExA method samples the distal airways. PExA is thus considered a new promising non-invasive assessment for monitoring of the distal airways.
Assuntos
Lavagem Broncoalveolar/métodos , Monitorização Fisiológica/métodos , Proteína A Associada a Surfactante Pulmonar/análise , Adulto , Ar/análise , Albuminas/análise , Biomarcadores , Líquido da Lavagem Broncoalveolar/química , Broncoscopia , Expiração , Feminino , Voluntários Saudáveis , Humanos , Masculino , Adulto JovemRESUMO
BACKGROUND: The imbalance between proteases and anti-proteases is considered to contribute to the development of COPD. Our aim was to evaluate the protease MMP-9, the antiprotease TIMP-1 and the MMP-9/TIMP-1-ratio as biomarkers in relation to prognosis. Prognosis was assessed as lung function decline and mortality. This was done among subjects with COPD in a population-based cohort. METHODS: In 2005, clinical examinations including spirometry and peripheral blood sampling, were made in a longitudinal population-based cohort. In total, 1542 individuals participated, whereof 594 with COPD. In 2010, 1031 subjects participated in clinical examinations, and 952 subjects underwent spirometry in both 2005 and 2010. Serum MMP-9 and TIMP-1 concentrations were measured with enzyme linked immunosorbent assay (ELISA). Mortality data were collected from the Swedish national mortality register from the date of examination in 2005 until 31st December 2010. RESULTS: The correlation between biomarkers and lung function decline was similar in non-COPD and COPD, but only significant for MMP-9 and MMP-9/TIMP-1-ratio in non-COPD. Mortality was higher in COPD than non-COPD (16% vs. 10%, p = 0.008). MMP-9 concentrations and MMP-9/TIMP-1 ratios in 2005 were higher among those who died during follow up, as well as among those alive but not participating in 2010, when compared to those participating in the 2010-examination. In non-COPD, male sex, age, burden of smoking, heart disease and MMP-9/TIMP-1 ratio were associated with increased risk for death, while increased TIMP-1 was protective. Among those with COPD, age, current smoking, increased MMP-9 and MMP-9/TIMP-1 ratio were associated with an increased risk for death. CONCLUSIONS: The expected association between these biomarkers and lung function decline in COPD was not confirmed in this population-based study, probably due to a healthy survivor effect. Still, it is suggested that increased proteolytic imbalance may be of greater prognostic importance in COPD than in non-COPD.
Assuntos
Metaloproteinase 9 da Matriz/sangue , Vigilância da População , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Relatório de Pesquisa , Inibidor Tecidual de Metaloproteinase-1/sangue , Idoso , Biomarcadores/sangue , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Proteólise , Testes de Função Respiratória/métodos , Espirometria/métodosRESUMO
BACKGROUND: Cytotoxic lymphocytes are increased in the airways of COPD patients. Whether this increase is driven primarily by the disease or by smoking is not clear, nor whether it correlates with the rate of decline in lung function. METHODS: Bronchoscopy with BAL was performed in 52 subjects recruited from the longitudinal OLIN COPD study according to pre-determined criteria; 12 with COPD and a rapid decline in lung function (loss of FEV1 ≥ 60 ml/year), 10 with COPD and a non-rapid decline in lung function (loss of FEV1 ≤ 30 ml/year), 15 current and ex-smokers and 15 non-smokers with normal lung function. BAL lymphocyte subsets were determined using flow cytometry. RESULTS: In BAL fluid, the proportions of NK, iNKT and NKT-like cells all increased with pack-years. Within the COPD group, NK cells - but not iNKT or NKT-like cells - were significantly elevated also in subjects that had quit smoking. In contrast, current smoking was associated with a marked increase in iNKT and NKT-like cells but not in NK cells. Rate of lung function decline did not significantly affect any of the results. CONCLUSIONS: In summary, increased proportions of NK cells in BAL fluid were associated with COPD; iNKT and NKT-like cells with current smoking but not with COPD. Interestingly, NK cell percentages did not normalize in COPD subjects that had quit smoking, indicating that these cells might play a role in the continued disease progression seen in COPD even after smoking cessation. TRIAL REGISTRATION: Clinicaltrials.gov identifier NCT02729220 .
Assuntos
Células Matadoras Naturais/metabolismo , Células T Matadoras Naturais/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fumar/efeitos adversos , Fumar/metabolismo , Idoso , Estudos Transversais , Feminino , Seguimentos , Humanos , Células Matadoras Naturais/patologia , Linfócitos/metabolismo , Linfócitos/patologia , Masculino , Pessoa de Meia-Idade , Células T Matadoras Naturais/patologia , Doença Pulmonar Obstrutiva Crônica/patologia , Fumar/patologia , Abandono do Hábito de FumarRESUMO
AIM: Inhibition of cyclooxygenase-2 (COX-2) is proposed as a treatment option in several cancer types. However, in non-small cell lung cancer (NSCLC), phase III trials have failed to demonstrate a benefit of adding COX-2 inhibitors to standard chemotherapy. The aim of this study was to analyze COX-2 expression in tumor and stromal cells as predictive biomarker for COX-2 inhibition. METHODS: In a multicenter phase III trial, 316 patients with advanced NSCLC were randomized to receive celecoxib (400 mg b.i.d.) or placebo up to one year in addition to a two-drug platinum-based chemotherapy combination. In a subset of 122 patients, archived tumor tissue was available for immunohistochemical analysis of COX-2 expression in tumor and stromal cells. For each compartment, COX-2 expression was graded as high or low, based on a product score of extension and intensity of positively stained cells. RESULTS: An updated analysis of all 316 patients included in the original trial, and of the 122 patients with available tumor tissue, showed no survival differences between the celecoxib and placebo arms (HR 1.01; 95% CI 0.81-1.27 and HR 1.12; 95% CI 0.78-1.61, respectively). High COX-2 scores in tumor (n = 71) or stromal cells (n = 55) was not associated with a superior survival outcome with celecoxib vs. placebo (HR =0.96, 95% CI 0.60-1.54; and HR =1.51; 95% CI 0.86-2.66), and no significant interaction effect between COX-2 score in tumor or stromal cells and celecoxib effect on survival was detected (p = .48 and .25, respectively). CONCLUSIONS: In this subgroup analysis of patients with advanced NSCLC treated within the context of a randomized trial, we could not detect any interaction effect of COX-2 expression in tumor or stromal cells and the outcome of celecoxib treatment in addition to standard chemotherapy.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Celecoxib/uso terapêutico , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Ciclo-Oxigenase 2/análise , Neoplasias Pulmonares/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/análise , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Ciclo-Oxigenase 2/biossíntese , Intervalo Livre de Doença , Feminino , Humanos , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Compostos de Platina/uso terapêutico , Resultado do TratamentoRESUMO
Every breath we take contains potentially harmful pathogens or allergens. Dendritic cells (DCs), monocytes, and macrophages are essential in maintaining a delicate balance of initiating immunity without causing collateral damage to the lungs because of an exaggerated inflammatory response. To document the diversity of lung mononuclear phagocytes at steady-state, we performed bronchoscopies on 20 healthy subjects, sampling the proximal and distal airways (bronchial wash and bronchoalveolar lavage, respectively), as well as mucosal tissue (endobronchial biopsies). In addition to a substantial population of alveolar macrophages, we identified subpopulations of monocytes, myeloid DCs (MDCs), and plasmacytoid DCs in the lung mucosa. Intermediate monocytes and MDCs were highly frequent in the airways compared with peripheral blood. Strikingly, the density of mononuclear phagocytes increased upon descending the airways. Monocytes from blood and airways produced 10-fold more proinflammatory cytokines than MDCs upon ex vivo stimulation. However, airway monocytes were less inflammatory than blood monocytes, suggesting a more tolerant nature. The findings of this study establish how to identify human lung mononuclear phagocytes and how they function in normal conditions, so that dysregulations in patients with respiratory diseases can be detected to elucidate their contribution to immunity or pathogenesis.
Assuntos
Inflamação/imunologia , Monócitos/imunologia , Mucosa Respiratória/imunologia , Adolescente , Adulto , Células Dendríticas/imunologia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Adulto JovemRESUMO
The adverse effects of petrodiesel exhaust exposure on the cardiovascular and respiratory systems are well recognized. While biofuels such as rapeseed methyl ester (RME) biodiesel may have ecological advantages, the exhaust generated may cause adverse health effects. In the current study, we investigated the responses of bioactive lipid mediators in human airways after biodiesel exhaust exposure using lipidomic profiling methods. Lipid mediator levels in lung lavage were assessed following 1-h biodiesel exhaust (average particulate matter concentration, 159 µg/m3) or filtered air exposure in 15 healthy individuals in a double-blinded, randomized, controlled, crossover study design. Bronchoscopy was performed 6 h post exposure and lung lavage fluids, i.e., bronchial wash (BW) and bronchoalveolar lavage (BAL), were sequentially collected. Mass spectrometry methods were used to detect a wide array of oxylipins (including eicosanoids), endocannabinoids, N-acylethanolamines, and related lipid metabolites in the collected BW and BAL samples. Six lipids in the human lung lavage samples were altered following biodiesel exhaust exposure, three from BAL samples and three from BW samples. Of these, elevated levels of PGE2, 12,13-DiHOME, and 13-HODE, all of which were found in BAL samples, reached Bonferroni-corrected significance. This is the first study in humans reporting responses of bioactive lipids following biodiesel exhaust exposure and the most pronounced responses were seen in the more peripheral and alveolar lung compartments, reflected by BAL collection. Since the responsiveness and diagnostic value of a subset of the studied lipid metabolites were established in lavage fluids, we conclude that our mass spectrometry profiling method is useful to assess effects of human exposure to vehicle exhaust.
Assuntos
Biocombustíveis/análise , Líquido da Lavagem Broncoalveolar/química , Dinoprostona/análise , Endocanabinoides/análise , Etanolaminas/análise , Oxilipinas/análise , Emissões de Veículos/análise , Adulto , Exposição Ambiental/análise , Feminino , Humanos , Masculino , Espectrometria de Massas/métodos , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
Most inhaled nanomedicines in development are for the treatment of lung disease, yet little is known about their interaction with the respiratory tract lining fluids (RTLFs). Here we combined the use of nano-silica, as a protein concentrator, with label-free snapshot proteomics (LC-MS/MS; key findings confirmed by ELISA) to generate a quantitative profile of the RTLF proteome and provided insight into the evolved corona; information that may be used in future to improve drug targeting to the lungs by inhaled medicines. The asthmatic coronal proteome displayed a reduced contribution of surfactant proteins (SP-A and B) and a higher contribution of α1-antitrypsin. Pathway analysis suggested that asthmatic RTLFs may also be deficient in proteins related to metal handling (e.g. lactoferrin). This study demonstrates how the composition of the corona acquired by inhaled nanoparticles is modified in asthma and suggests depressed mucosal immunity even in mild airway disease.
Assuntos
Asma/metabolismo , Pulmão/metabolismo , Nanopartículas/metabolismo , Coroa de Proteína/metabolismo , Dióxido de Silício/metabolismo , Administração por Inalação , Humanos , Coroa de Proteína/análise , Proteoma/análise , Proteoma/metabolismo , ProteômicaRESUMO
Metabolomics protocols are used to comprehensively characterize the metabolite content of biological samples by exploiting cutting-edge analytical platforms, such as gas chromatography (GC) or liquid chromatography (LC) coupled to mass spectrometry (MS) assays, as well as nuclear magnetic resonance (NMR) assays. We have developed novel sample preparation procedures combined with GC-MS, LC-MS, and NMR metabolomics profiling for analyzing bronchial wash (BW) and bronchoalveolar lavage (BAL) fluid from 15 healthy volunteers following exposure to biodiesel exhaust and filtered air. Our aim was to investigate the responsiveness of metabolite profiles in the human lung to air pollution exposure derived from combustion of biofuels, such as rapeseed methyl ester biodiesel, which are increasingly being promoted as alternatives to conventional fossil fuels. Our multi-platform approach enabled us to detect the greatest number of unique metabolites yet reported in BW and BAL fluid (82 in total). All of the metabolomics assays indicated that the metabolite profiles of the BW and BAL fluids differed appreciably, with 46 metabolites showing significantly different levels in the corresponding lung compartments. Furthermore, the GC-MS assay revealed an effect of biodiesel exhaust exposure on the levels of 1-monostearylglycerol, sucrose, inosine, nonanoic acid, and ethanolamine (in BAL) and pentadecanoic acid (in BW), whereas the LC-MS assay indicated a shift in the levels of niacinamide (in BAL). The NMR assay only identified lactic acid (in BW) as being responsive to biodiesel exhaust exposure. Our findings demonstrate that the proposed multi-platform approach is useful for wide metabolomics screening of BW and BAL fluids and can facilitate elucidation of metabolites responsive to biodiesel exhaust exposure. Graphical Abstract Graphical abstract illustrating the study workflow. NMR Nuclear Magnetic Resonance, LC-TOFMS Liquid chromatography-Time Of Flight Mass Spectrometry, GC Gas Chromatography-Mass spectrometry.
Assuntos
Poluição do Ar , Líquido da Lavagem Broncoalveolar , Exposição Ambiental , Metabolômica , Cromatografia Líquida , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Espectroscopia de Ressonância Magnética , MasculinoRESUMO
When inhaled nanoparticles deposit in the lungs, they transit through respiratory tract lining fluid (RTLF) acquiring a biomolecular corona reflecting the interaction of the RTLF with the nanomaterial surface. Label-free snapshot proteomics was used to generate semi-quantitative profiles of corona proteins formed around silica (SiO2) and poly(vinyl) acetate (PVAc) nanoparticles in RTLF, the latter employed as an archetype drug delivery vehicle. The evolved PVAc corona was significantly enriched compared to that observed on SiO2 nanoparticles (698 vs. 429 proteins identified); however both coronas contained a substantial contribution from innate immunity proteins, including surfactant protein A, napsin A and complement (C1q and C3) proteins. Functional protein classification supports the hypothesis that corona formation in RTLF constitutes opsonisation, preparing particles for phagocytosis and clearance from the lungs. These data highlight how an understanding of the evolved corona is necessary for the design of inhaled nanomedicines with acceptable safety and tailored clearance profiles. FROM THE CLINICAL EDITOR: Inhaled nanoparticles often acquire a layer of protein corona while they go through the respiratory tract. Here, the authors investigated the identity of these proteins. The proper identification would improve the understanding of the use of inhaled nanoparticles in future therapeutics.
Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas/administração & dosagem , Coroa de Proteína , Sistema Respiratório/metabolismo , Adulto , Ácido Aspártico Endopeptidases/biossíntese , Ácido Aspártico Endopeptidases/isolamento & purificação , Líquidos Corporais/metabolismo , Complemento C1q/biossíntese , Complemento C1q/isolamento & purificação , Complemento C3/biossíntese , Complemento C3/isolamento & purificação , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Nanopartículas/efeitos adversos , Proteômica , Proteína A Associada a Surfactante Pulmonar/biossíntese , Proteína A Associada a Surfactante Pulmonar/isolamento & purificação , Sistema Respiratório/efeitos dos fármacos , Dióxido de Silício/administração & dosagem , Dióxido de Silício/químicaRESUMO
BACKGROUND: Chronic obstructive pulmonary disease, COPD, is an increasing cause of morbidity and mortality worldwide, and an imbalance between proteases and antiproteases has been implicated to play a role in COPD pathogenesis. Matrix metalloproteinases (MMP) are important proteases that along with their inhibitors, tissue inhibitors of metalloproteinases (TIMP), affect homeostasis of elastin and collagen, of importance for the structural integrity of human airways. Small observational studies indicate that these biomarkers are involved in the pathogenesis of COPD. The aim of this study was to investigate serum levels of MMP-9 and TIMP-1 in a large Swedish population-based cohort, and their association with disease severity and important clinical symptoms of COPD such as productive cough. METHODS: Spirometry was performed and peripheral blood samples were collected in a populations-based cohort (median age 67 years) comprising subjects with COPD (n = 594) and without COPD (n = 948), in total 1542 individuals. Serum MMP-9 and TIMP-1 concentrations were measured with enzyme linked immunosorbant assay (ELISA) and related to lung function data and symptoms. RESULTS: Median serum MMP-9 values were significantly higher in COPD compared with non-COPD 535 vs. 505 ng/ml (P = 0.017), without any significant differences in serum TIMP-1-levels or MMP-9/TIMP-1-ratio. In univariate analysis, productive cough and decreasing FEV1% predicted correlated significantly with increased MMP-9 among subjects with COPD (P = 0.004 and P = 0.001 respectively), and FEV1% predicted remained significantly associated to MMP-9 in a multivariate model adjusting for age, sex, pack years and productive cough (P = 0.033). CONCLUSION: Productive cough and decreasing FEV1 were each associated with MMP-9 in COPD, and decreasing FEV1 remained significantly associated with MMP-9 also after adjustment for common confounders in this population-based COPD cohort. The increased serum MMP-9 concentrations in COPD indicate an enhanced proteolytic activity that is related to disease severity, and further longitudinal studies are important for the understanding of MMP-9 in relation to the disease process and the pathogenesis of different COPD phenotypes.
Assuntos
Metaloproteinase 9 da Matriz/sangue , Doença Pulmonar Obstrutiva Crônica/sangue , Idoso , Biomarcadores/sangue , Estudos de Casos e Controles , Distribuição de Qui-Quadrado , Tosse/etiologia , Estudos Transversais , Ensaio de Imunoadsorção Enzimática , Feminino , Volume Expiratório Forçado , Humanos , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Valor Preditivo dos Testes , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/enzimologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Fatores de Risco , Índice de Gravidade de Doença , Suécia , Inibidor Tecidual de Metaloproteinase-1/sangue , Regulação para CimaRESUMO
Modern analytical techniques allow for the measurement of oxylipins derived from linoleic acid in biological samples. Most validatory work has concerned extraction techniques, repeated analysis of aliquots from the same biological sample, and the influence of external factors such as diet and heparin treatment upon their levels, whereas less is known about the relative and absolute reliability of measurements undertaken on different days. A cohort of nineteen healthy males were used, where samples were taken at the same time of day on two occasions, at least 7 days apart. Relative reliability was assessed using Lin's concordance correlation coefficients (CCC) and intraclass correlation coefficients (ICC). Absolute reliability was assessed by Bland-Altman analyses. Nine linoleic acid oxylipins were investigated. ICC and CCC values ranged from acceptable (0.56 [13-HODE]) to poor (near zero [9(10)- and 12(13)-EpOME]). Bland-Altman limits of agreement were in general quite wide, ranging from ±0.5 (12,13-DiHOME) to ±2 (9(10)-EpOME; log10 scale). It is concluded that relative reliability of linoleic acid-derived oxylipins varies between lipids with compounds such as the HODEs showing better relative reliability than compounds such as the EpOMEs. These differences should be kept in mind when designing and interpreting experiments correlating plasma levels of these lipids with factors such as age, body mass index, rating scales etc.
Assuntos
Ácidos Linoleicos/sangue , Oxilipinas/sangue , Adulto , Ácidos Araquidônicos/sangue , Biomarcadores/sangue , Calibragem , Cromatografia Líquida de Alta Pressão , Estudos de Coortes , Humanos , Masculino , Ácidos Oleicos/sangue , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray , Estatística como Assunto , Espectrometria de Massas em Tandem , Adulto JovemRESUMO
BACKGROUND: Smoke from combustion of biomass fuels is a major risk factor for respiratory disease, but the underlying mechanisms are poorly understood. The aim of this study was to determine whether exposure to wood smoke from incomplete combustion would elicit airway inflammation in humans. METHODS: Fourteen healthy subjects underwent controlled exposures on two separate occasions to filtered air and wood smoke from incomplete combustion with PM1 concentration at 314 µg/m(3) for 3 h in a chamber. Bronchoscopy with bronchial wash (BW), bronchoalveolar lavage (BAL) and endobronchial mucosal biopsies was performed after 24 h. Differential cell counts and soluble components were analyzed, with biopsies stained for inflammatory markers using immunohistochemistry. In parallel experiments, the toxicity of the particulate matter (PM) generated during the chamber exposures was investigated in vitro using the RAW264.7 macrophage cell line. RESULTS: Significant reductions in macrophage, neutrophil and lymphocyte numbers were observed in BW (p < 0.01, <0.05, <0.05, respectively) following the wood smoke exposure, with a reduction in lymphocytes numbers in BAL fluid (<0.01. This unexpected cellular response was accompanied by decreased levels of sICAM-1, MPO and MMP-9 (p < 0.05, <0.05 and <0.01). In contrast, significant increases in submucosal and epithelial CD3+ cells, epithelial CD8+ cells and submucosal mast cells (p < 0.01, <0.05, <0.05 and <0.05, respectively), were observed after wood smoke exposure. The in vitro data demonstrated that wood smoke particles generated under these incomplete combustion conditions induced cell death and DNA damage, with only minor inflammatory responses. CONCLUSIONS: Short-term exposure to sooty PAH rich wood smoke did not induce an acute neutrophilic inflammation, a classic hallmark of air pollution exposure in humans. While minor proinflammatory lymphocytic and mast cells effects were observed in the bronchial biopsies, significant reductions in BW and BAL cells and soluble components were noted. This unexpected observation, combined with the in vitro data, suggests that wood smoke particles from incomplete combustion could be potentially cytotoxic. Additional research is required to establish the mechanism of this dramatic reduction in airway leukocytes and to clarify how this acute response contributes to the adverse health effects attributed to wood smoke exposure. TRIAL REGISTRATION: NCT01488500.