Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
PLoS Pathog ; 18(4): e1010167, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35482787

RESUMO

Salmonella enterica serovar Typhimurium (S. Typhimurium) is one of the leading causes of food-borne illnesses worldwide. To colonize the gastrointestinal tract, S. Typhimurium produces multiple virulence factors that facilitate cellular invasion. Chitinases have been recently emerging as virulence factors for various pathogenic bacterial species, and the S. Typhimurium genome contains two annotated chitinases: STM0018 (chiA) and STM0233. However, the role of these chitinases during S. Typhimurium pathogenesis is unknown. The putative chitinase STM0233 has not been studied previously, and only limited data exists on ChiA. Chitinases typically hydrolyze chitin polymers, which are absent in vertebrates. However, chiA expression was detected in infection models and purified ChiA cleaved carbohydrate subunits present on mammalian surface glycoproteins, indicating a role during pathogenesis. Here, we demonstrate that expression of chiA and STM0233 is upregulated in the mouse gut and that both chitinases facilitate epithelial cell adhesion and invasion. S. Typhimurium lacking both chitinases showed a 70% reduction in invasion of small intestinal epithelial cells in vitro. In a gastroenteritis mouse model, chitinase-deficient S. Typhimurium strains were also significantly attenuated in the invasion of small intestinal tissue. This reduced invasion resulted in significantly delayed S. Typhimurium dissemination to the spleen and the liver, but chitinases were not required for systemic survival. The invasion defect of the chitinase-deficient strain was rescued by the presence of wild-type S. Typhimurium, suggesting that chitinases are secreted. By analyzing N-linked glycans of small intestinal cells, we identified specific N-acetylglucosamine-containing glycans as potential extracellular targets of S. Typhimurium chitinases. This analysis also revealed a differential abundance of Lewis X/A-containing glycans that is likely a result of host cell modulation due to the detection of S. Typhimurium chitinases. Similar glycomic changes elicited by chitinase deficient strains indicate functional redundancy of the chitinases. Overall, our results demonstrate that S. Typhimurium chitinases contribute to intestinal adhesion and invasion through modulation of the host glycome.


Assuntos
Quitinases , Salmonella enterica , Animais , Quitina , Quitinases/genética , Quitinases/metabolismo , Mamíferos , Camundongos , Salmonella enterica/metabolismo , Salmonella typhimurium , Sorogrupo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
2.
Infect Immun ; 91(7): e0054922, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37255426

RESUMO

It has been widely appreciated that numerous bacterial species express chitinases for the purpose of degrading environmental chitin. However, chitinases and chitin-binding proteins are also expressed by pathogenic bacterial species during infection even though mammals do not produce chitin. Alternative molecular targets are therefore likely present within the host. Here, we will describe our current understanding of chitinase/chitin-binding proteins as virulence factors that promote bacterial colonization and infection. The targets of these chitinases in the host have been shown to include immune system components, mucins, and surface glycans. Bacterial chitinases have also been shown to interact with other microorganisms, targeting the peptidoglycan or chitin in the bacterial and fungal cell wall, respectively. This review highlights that even though the name "chitinase" implies activity toward chitin, chitinases can have a wide diversity of targets, including ones relevant to host infection. Chitinases may therefore be useful as a target of future anti-infective therapeutics.


Assuntos
Quitinases , Animais , Humanos , Quitinases/metabolismo , Bactérias/metabolismo , Polissacarídeos/metabolismo , Quitina/metabolismo , Fatores de Virulência/metabolismo , Proteínas de Transporte , Mamíferos
3.
Immunity ; 40(2): 262-73, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24508234

RESUMO

Interleukin-22 (IL-22) is highly induced in response to infections with a variety of pathogens, and its main functions are considered to be tissue repair and host defense at mucosal surfaces. Here we showed that IL-22 has a unique role during infection in that its expression suppressed the intestinal microbiota and enhanced the colonization of a pathogen. IL-22 induced the expression of antimicrobial proteins, including lipocalin-2 and calprotectin, which sequester essential metal ions from microbes. Because Salmonella enterica ser. Typhimurium can overcome metal ion starvation mediated by lipocalin-2 and calprotectin via alternative pathways, IL-22 boosted its colonization of the inflamed intestine by suppressing commensal Enterobacteriaceae, which are susceptible to the antimicrobial proteins. Thus, IL-22 tipped the balance between pathogenic and commensal bacteria in favor of a pathogen. Taken together, IL-22 induction can be exploited by pathogens to suppress the growth of their closest competitors, thereby enhancing pathogen colonization of mucosal surfaces.


Assuntos
Interações Hospedeiro-Patógeno , Interleucinas/imunologia , Intestinos/microbiologia , Infecções por Salmonella/imunologia , Infecções por Salmonella/microbiologia , Simbiose/imunologia , Animais , Citocinas/metabolismo , Interleucinas/genética , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima , Interleucina 22
4.
Immunity ; 39(2): 206-7, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23973218

RESUMO

In this issue of Immunity, Zelante et al. (2013) and Qiu et al. (2013) provide mechanistic insights into functional interactions between commensal microbes and innate lymphoid cells via the aryl hydrocarbon receptor.


Assuntos
Candida albicans/imunologia , Colite/imunologia , Interleucinas/metabolismo , Limosilactobacillus reuteri/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Células Th17/imunologia , Triptofano/metabolismo , Animais , Feminino , Interleucina 22
5.
Infect Immun ; 89(4)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33526565

RESUMO

The term "microbiota" invokes images of mucosal surfaces densely populated with bacteria. These surfaces and the luminal compartments they form indeed predominantly harbor bacteria. However, research from this past decade has started to complete the picture by focusing on important but largely neglected constituents of the microbiota: fungi, viruses, and archaea. The community of commensal fungi, also called the mycobiota, interacts with commensal bacteria and the host. It is thus not surprising that changes in the mycobiota have significant impact on host health and are associated with pathological conditions such as inflammatory bowel disease (IBD). In this review we will give an overview of why the mycobiota is an important research area and different mycobiota research tools. We will specifically focus on distinguishing transient and actively colonizing fungi of the oral and gut mycobiota and their roles in health and disease. In addition to correlative and observational studies, we will discuss mechanistic studies on specific cross-kingdom interactions of fungi, bacteria, and the host.


Assuntos
Bactérias , Suscetibilidade a Doenças , Fungos , Homeostase , Interações entre Hospedeiro e Microrganismos , Interações Microbianas , Micobioma , Animais , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Metagenoma , Metagenômica/métodos , Técnicas Microbiológicas , Microbiota , Especificidade de Órgãos
6.
Trends Immunol ; 36(2): 112-20, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25582038

RESUMO

Pathogens have evolved clever strategies to evade and in some cases exploit the attacks of an activated immune system. Salmonella enterica is one such pathogen, exploiting multiple aspects of host defense to promote its replication in the host. Here we review recent findings on the mechanisms by which Salmonella establishes systemic and chronic infection, including strategies involving manipulation of innate immune signaling and inflammatory forms of cell death, as well as immune evasion by establishing residency in M2 macrophages. We also examine recent evidence showing that the oxidative environment and the high levels of antimicrobial proteins produced in response to localized Salmonella gastrointestinal infection enable the pathogen to successfully outcompete the resident gut microbiota.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Imunidade , Infecções por Salmonella/imunologia , Salmonella/imunologia , Animais , Humanos , Mucosa Intestinal/metabolismo , Intestinos/imunologia , Intestinos/microbiologia , Estresse Oxidativo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Infecções por Salmonella/metabolismo , Receptores Toll-Like/metabolismo
7.
Infect Immun ; 84(9): 2639-52, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27382022

RESUMO

Sodium phenylbutyrate (PBA) is a derivative of the short-chain fatty acid butyrate and is approved for treatment of urea cycle disorders and progressive familial intrahepatic cholestasis type 2. Previously known functions include histone deacetylase inhibitor, endoplasmic reticulum stress inhibitor, ammonia sink, and chemical chaperone. Here, we show that PBA has a previously undiscovered protective role in host mucosal defense during infection. Administration of PBA to Taconic mice resulted in the increase of intestinal Lactobacillales and segmented filamentous bacteria (SFB), as well as an increase of interleukin 17 (IL-17) production by intestinal cells. This effect was not observed in Jackson Laboratory mice, which are not colonized with SFB. Because previous studies showed that IL-17 plays a protective role during infection with mucosal pathogens, we hypothesized that Taconic mice treated with PBA would be more resistant to infection with Salmonella enterica serovar Typhimurium (S Typhimurium). By using the streptomycin-treated mouse model, we found that Taconic mice treated with PBA exhibited significantly lower S Typhimurium intestinal colonization and dissemination to the reticuloendothelial system, as well as lower levels of inflammation. The lower levels of S Typhimurium gut colonization and intestinal inflammation were not observed in Jackson Laboratory mice. Although PBA had no direct effect on bacterial replication, its administration reduced S Typhimurium epithelial cell invasion and lowered the induction of the proinflammatory cytokine IL-23 in macrophage-like cells. These effects likely contributed to the better outcome of infection in PBA-treated mice. Overall, our results suggest that PBA induces changes in the microbiota and in the mucosal immune response that can be beneficial to the host during infection with S Typhimurium and possibly other enteric pathogens.


Assuntos
Fenilbutiratos/administração & dosagem , Salmonelose Animal/tratamento farmacológico , Salmonella typhimurium/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Imunidade nas Mucosas/imunologia , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/microbiologia , Interleucina-17/metabolismo , Interleucina-23/metabolismo , Intestinos/imunologia , Intestinos/microbiologia , Lactobacillales/efeitos dos fármacos , Lactobacillales/imunologia , Lactobacillales/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Salmonelose Animal/imunologia , Salmonelose Animal/microbiologia , Salmonella typhimurium/imunologia , Estreptomicina/farmacologia
8.
mBio ; 15(7): e0120924, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38860764

RESUMO

Mammalian AIM-2-like receptor (ALR) proteins bind nucleic acids and initiate production of type I interferons or inflammasome assembly, thereby contributing to host innate immunity. In mice, the Alr locus is highly polymorphic at the sequence and copy number level, and we show here that it is one of the most dynamic regions of the genome. One rapidly evolving gene within this region, Ifi207, was introduced to the Mus genome by gene conversion or an unequal recombination event a few million years ago. Ifi207 has a large, distinctive repeat region that differs in sequence and length among Mus species and even closely related inbred Mus musculus strains. We show that IFI207 controls murine leukemia virus (MLV) infection in vivo and that it plays a role in the STING-mediated response to cGAMP, dsDNA, DMXXA, and MLV. IFI207 binds to STING, and inclusion of its repeat region appears to stabilize STING protein. The Alr locus and Ifi207 provide a clear example of the evolutionary innovation of gene function, possibly as a result of host-pathogen co-evolution.IMPORTANCEThe Red Queen hypothesis predicts that the arms race between pathogens and the host may accelerate evolution of both sides, and therefore causes higher diversity in virulence factors and immune-related proteins, respectively . The Alr gene family in mice has undergone rapid evolution in the last few million years and includes the creation of two novel members, MndaL and Ifi207. Ifi207, in particular, became highly divergent, with significant genetic changes between highly related inbred mice. IFI207 protein acts in the STING pathway and contributes to anti-retroviral resistance via a novel mechanism. The data show that under the pressure of host-pathogen coevolution in a dynamic locus, gene conversion and recombination between gene family members creates new genes with novel and essential functions that play diverse roles in biological processes.


Assuntos
Proteínas de Membrana , Replicação Viral , Animais , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Evolução Molecular , Imunidade Inata , Vírus da Leucemia Murina/genética , Vírus da Leucemia Murina/fisiologia , Camundongos Endogâmicos C57BL , Interações Hospedeiro-Patógeno/genética
9.
Cell Host Microbe ; 31(10): 1597-1599, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37827119

RESUMO

Salmonella employs an arsenal of different tools to obtain iron. In this issue of Cell Host & Microbe, Spiga et al. add to these mechanisms, revealing that commensal Bacteroides species use a specialized lipoprotein to acquire catecholate siderophores from Enterobacteriaceae, only to have them reacquired by Salmonella.


Assuntos
Ferro , Sideróforos , Enterobacteriaceae , Salmonella
10.
Gut Microbes ; 15(1): 2226916, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37365731

RESUMO

A diverse array of commensal microorganisms inhabits the human intestinal tract. The most abundant and most studied members of this microbial community are undoubtedly bacteria. Their important role in gut physiology, defense against pathogens, and immune system education has been well documented over the last decades. However, the gut microbiome is not restricted to bacteria. It encompasses the entire breadth of microbial life: viruses, archaea, fungi, protists, and parasitic worms can also be found in the gut. While less studied than bacteria, their divergent but important roles during health and disease have become increasingly more appreciated. This review focuses on these understudied members of the gut microbiome. We will detail the composition and development of these microbial communities and will specifically highlight their functional interactions with enteric pathogens, such as species of the family Enterobacteriaceae. The interactions can be direct through physical interactions, or indirect through secreted metabolites or modulation of the immune response. We will present general concepts and specific examples of how non-bacterial gut communities modulate bacterial pathogenesis and present an outlook for future gut microbiome research that includes these communities.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/fisiologia , Bactérias , Simbiose , Enterobacteriaceae
11.
Nat Microbiol ; 7(12): 2025-2038, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36411353

RESUMO

The fungal gut microbiota (mycobiota) has been implicated in diseases that disturb gut homeostasis, such as inflammatory bowel disease. However, little is known about functional relationships between bacteria and fungi in the gut during infectious colitis. Here we investigated the role of fungal metabolites during infection with the intestinal pathogen Salmonella enterica serovar Typhimurium, a major cause of gastroenteritis worldwide. We found that, in the gut lumen, both the mycobiota and fungi present in the diet can be a source of siderophores, small molecules that scavenge iron from the host. The ability to use fungal siderophores, such as ferrichrome and coprogen, conferred a competitive growth advantage to Salmonella strains expressing the fungal siderophore receptors FhuA or FhuE in vitro and in a mouse model. Our study highlights the role of inter-kingdom cross-feeding between fungi and Salmonella and elucidates an additional function of the gut mycobiota, revealing the importance of these understudied members of the gut ecosystem during bacterial infection.


Assuntos
Microbioma Gastrointestinal , Sideróforos , Animais , Camundongos , Ecossistema , Dieta , Salmonella typhimurium
12.
Int J Med Microbiol ; 301(5): 436-44, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21571589

RESUMO

The saprophytic fungus Aspergillus fumigatus is a mold which is ubiquitously present in the environment. It produces large numbers of spores, called conidia that we constantly inhale with the breathing air. Healthy individuals normally do not suffer from true fungal infections with this pathogen. A normally robust resistance against Aspergillus is based on the presence of a very effective immunological defense system in the vertebrate body. Inhaled conidia are first encountered by lung-resident alveolar macrophages and then by neutrophil granulocytes. Both cell types are able to effectively ingest and destroy the fungus. Although some responses of the adaptive immune system develop, the key protection is mediated by innate immunity. The importance of phagocytes for defense against aspergillosis is also supported by large numbers of animal studies. Despite the production of aggressive chemicals that can extracellularly destroy fungal pathogens, the main effector mechanism of the innate immune system is phagocytosis. Very recently, the production of extracellular neutrophil extracellular traps (NETs) consisting of nuclear DNA has been added to the armamentarium that innate immune cells use against infection with Aspergillus. Phagocyte responses to Aspergillus are very broad, and a number of new observations have added to this complexity in recent years. To summarize established and newer findings, we will give an overview on current knowledge of the phagocyte system for the protection against Aspergillus.


Assuntos
Aspergillus fumigatus/imunologia , Imunidade Inata , Fagócitos/imunologia , Fagócitos/microbiologia , Fagocitose , Animais , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , Neutrófilos/imunologia , Neutrófilos/microbiologia
13.
mSphere ; 6(4): e0032121, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34319125

RESUMO

Many bacterial species employ systems for interference competition with other microorganisms. Some systems are effective without contact (e.g., through secretion of toxins), while other systems (e.g., type VI secretion system [T6SS]) require direct contact between cells. Here, we provide the initial characterization of a novel contact-dependent competition system for Proteus mirabilis. In neonatal mice, a commensal P. mirabilis strain apparently eliminated commensal Escherichia coli. We replicated the phenotype in vitro and showed that P. mirabilis efficiently reduced the viability of several Enterobacteriaceae species but not Gram-positive species or yeast cells. Importantly, P. mirabilis strains isolated from humans also killed E. coli. A reduction of viability occurred from early stationary phase to 24 h of culture and was observed in shaking liquid media as well as on solid media. Killing required contact but was independent of T6SS, which is the only contact-dependent killing system described for P. mirabilis. Expression of the killing system was regulated by osmolarity and components secreted into the supernatant. Stationary-phase P. mirabilis culture supernatant itself did not kill but was sufficient to induce killing in an exponentially growing coculture. In contrast, killing was largely prevented in media with low osmolarity. In summary, we provide the initial characterization of a potentially novel interbacterial competition system used by P. mirabilis. IMPORTANCE The study of bacterial competition systems has received significant attention in recent years. These systems are important in a multitude of polymicrobial environments and collectively shape the composition of complex ecosystems like the mammalian gut. They are also being explored as narrow-spectrum alternatives to specifically eliminate problematic pathogenic species. However, only a small fraction of the estimated number of interbacterial competition systems has been identified. We discovered a competition system that is novel for Proteus mirabilis. Inspired by an observation in infant mice, we confirmed in vitro that P. mirabilis was able to efficiently kill several Enterobacteriaceae species. This killing system might represent a new function of a known competition system or even a novel system, as the observed characteristics do not fit with described contact-dependent competition systems. Further characterization of this system might help understand how P. mirabilis competes with other Enterobacteriaceae in various niches.


Assuntos
Enterobacteriaceae/fisiologia , Interações Microbianas , Viabilidade Microbiana , Proteus mirabilis/fisiologia , Animais , Animais Recém-Nascidos , Meios de Cultura/química , Enterobacteriaceae/classificação , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Proteus mirabilis/genética , Organismos Livres de Patógenos Específicos , Sistemas de Secreção Tipo VI/genética
14.
Nat Commun ; 12(1): 7016, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853318

RESUMO

Zinc is an essential cofactor for bacterial metabolism, and many Enterobacteriaceae express the zinc transporters ZnuABC and ZupT to acquire this metal in the host. However, the probiotic bacterium Escherichia coli Nissle 1917 (or "Nissle") exhibits appreciable growth in zinc-limited media even when these transporters are deleted. Here, we show that Nissle utilizes the siderophore yersiniabactin as a zincophore, enabling Nissle to grow in zinc-limited media, to tolerate calprotectin-mediated zinc sequestration, and to thrive in the inflamed gut. We also show that yersiniabactin's affinity for iron or zinc changes in a pH-dependent manner, with increased relative zinc binding as the pH increases. Thus, our results indicate that siderophore metal affinity can be influenced by the local environment and reveal a mechanism of zinc acquisition available to commensal and pathogenic Enterobacteriaceae.


Assuntos
Enterobacteriaceae/metabolismo , Sideróforos/metabolismo , Zinco/metabolismo , Transportadores de Cassetes de Ligação de ATP , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Transporte , Colo/microbiologia , Colo/patologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Feminino , Complexo Antígeno L1 Leucocitário , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Endogâmicos C57BL , Fenóis , Salmonella typhi , Tiazóis
15.
Infect Immun ; 78(8): 3585-94, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20498262

RESUMO

The opportunistic human pathogenic fungus Aspergillus fumigatus is a major cause of fungal infections in immunocompromised patients. Innate immunity plays an important role in the defense against infections. The complement system represents an essential part of the innate immune system. This cascade system is activated on the surface of A. fumigatus conidia and hyphae and enhances phagocytosis of conidia. A. fumigatus conidia but not hyphae bind to their surface host complement regulators factor H, FHL-1, and CFHR1, which control complement activation. Here, we show that A. fumigatus hyphae possess an additional endogenous activity to control complement activation. A. fumigatus culture supernatant efficiently cleaved complement components C3, C4, C5, and C1q as well as immunoglobulin G. Secretome analysis and protease inhibitor studies identified the secreted alkaline protease Alp1, which is present in large amounts in the culture supernatant, as the central molecule responsible for this cleavage. An alp1 deletion strain was generated, and the culture supernatant possessed minimal complement-degrading activity. Moreover, protein extract derived from an Escherichia coli strain overproducing Alp1 cleaved C3b, C4b, and C5. Thus, the protease Alp1 is responsible for the observed cleavage and degrades a broad range of different substrates. In summary, we identified a novel mechanism in A. fumigatus that contributes to evasion from the host complement attack.


Assuntos
Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/imunologia , Complemento C3/metabolismo , Complemento C4/metabolismo , Complemento C5/metabolismo , Proteínas Fúngicas/metabolismo , Serina Endopeptidases/metabolismo , Animais , Aspergillus fumigatus/genética , Complemento C1q/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Deleção de Genes , Humanos , Hifas/enzimologia , Hifas/imunologia , Evasão da Resposta Imune , Imunoglobulina G/metabolismo , Camundongos , Serina Endopeptidases/genética
16.
PLoS Pathog ; 3(2): e13, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17274685

RESUMO

The fungal pathogens Aspergillus fumigatus and Candida albicans are major health threats for immune-compromised patients. Normally, macrophages and neutrophil granulocytes phagocytose inhaled Aspergillus conidia in the two-dimensional (2-D) environment of the alveolar lumen or Candida growing in tissue microabscesses, which are composed of a three-dimensional (3-D) extracellular matrix. However, neither the cellular dynamics, the per-cell efficiency, the outcome of this interaction, nor the environmental impact on this process are known. Live imaging shows that the interaction of phagocytes with Aspergillus or Candida in 2-D liquid cultures or 3-D collagen environments is a dynamic process that includes phagocytosis, dragging, or the mere touching of fungal elements. Neutrophils and alveolar macrophages efficiently phagocytosed or dragged Aspergillus conidia in 2-D, while in 3-D their function was severely impaired. The reverse was found for phagocytosis of Candida. The phagocytosis rate was very low in 2-D, while in 3-D most neutrophils internalized multiple yeasts. In competitive assays, neutrophils primarily incorporated Aspergillus conidia in 2-D and Candida yeasts in 3-D despite frequent touching of the other pathogen. Thus, phagocytes show activity best in the environment where a pathogen is naturally encountered. This could explain why "delocalized" Aspergillus infections such as hematogeneous spread are almost uncontrollable diseases, even in immunocompetent individuals.


Assuntos
Aspergillus fumigatus/imunologia , Candida albicans/imunologia , Fagócitos/imunologia , Fagocitose , Animais , Movimento Celular , Células Cultivadas , Células Dendríticas/imunologia , Meio Ambiente , Humanos , Proteínas Luminescentes/genética , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/imunologia , Regiões Promotoras Genéticas
17.
Infect Immun ; 76(2): 820-7, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18039838

RESUMO

The opportunistic human pathogenic fungus Aspergillus fumigatus causes severe systemic infections and is a major cause of fungal infections in immunocompromised patients. A. fumigatus conidia activate the alternative pathway of the complement system. In order to assess the mechanisms by which A. fumigatus evades the activated complement system, we analyzed the binding of host complement regulators to A. fumigatus. The binding of factor H and factor H-like protein 1 (FHL-1) from human sera to A. fumigatus conidia was shown by adsorption assays and immunostaining. In addition, factor H-related protein 1 (FHR-1) bound to conidia. Adsorption assays with recombinant factor H mutants were used to localize the binding domains. One binding region was identified within N-terminal short consensus repeats (SCRs) 1 to 7 and a second one within C-terminal SCR 20. Plasminogen was identified as the fourth host regulatory molecule that binds to A. fumigatus conidia. In contrast to conidia, other developmental stages of A. fumigatus, like swollen conidia or hyphae, did not bind to factor H, FHR-1, FHL-1, and plasminogen, thus indicating the developmentally regulated expression of A. fumigatus surface ligands. Both factor H and plasminogen maintained regulating activity when they were bound to the conidial surface. Bound factor H acted as a cofactor to the factor I-mediated cleavage of C3b. Plasminogen showed proteolytic activity when activated to plasmin by urokinase-type plasminogen activator. These data show that A. fumigatus conidia bind to complement regulators, and these bound host regulators may contribute to evasion of a host complement attack.


Assuntos
Aspergillus fumigatus/imunologia , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Sítios de Ligação , Proteínas Sanguíneas/imunologia , Proteínas Sanguíneas/metabolismo , Proteínas Inativadoras do Complemento C3b , Fator H do Complemento/imunologia , Fator H do Complemento/metabolismo , Humanos , Plasminogênio/imunologia , Plasminogênio/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Esporos Fúngicos/imunologia
19.
Surg Obes Relat Dis ; 13(4): 661-668, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28185763

RESUMO

BACKGROUND: Obesity and inflammatory bowel disease (IBD) represent chronic inflammatory conditions. Bariatric surgery improves some obesity-related co-morbidities, but the effects of bariatric surgery on IBD have not been well studied. OBJECTIVES: To examine if bariatric surgery may attenuate colitis in an obese murine model of IBD and study the mechanisms underlying the postsurgical amelioration of intestinal inflammation. SETTING: University of California Irvine, Department of Surgery and Microbiology laboratories. METHODS: Obese mice were assigned to one of 2 bariatric procedures [Duodenojejunal Bypass (DJB n = 6), Sleeve Gastrectomy (SG n = 8)]. Sham-operated mice were (Sham n = 8) were used as a control. After recovering from surgery, IBD was induced by administration of 2% dextran sodium sulfate. Fecal samples were collected before and after IBD induction for microbiome analysis. Pathologic analyses and immunohistochemical staining were performed on colon. RESULTS: Survival after DJB and SG was higher relative to Sham mice. Histologically, DJB mice had significantly less intestinal inflammation. The observed improvements were not related to a difference in weight among the groups. Farnesoid X receptor staining in the colon was observed quantitatively more in DJB than in SG and sham mice. A statistically significant increase in the number of Lactobacillales was observed in the stool of mice after DJB. CONCLUSION: These results suggest that bariatric surgery, in particular DJB, reduces the severity of colitis in a chemically-induced IBD murine model. The anticolitis effects of DJB may be associated with Farnesoid X receptor regulation and gut microbiome rearrangements.


Assuntos
Cirurgia Bariátrica , Colite Ulcerativa/complicações , Colo/patologia , Obesidade/cirurgia , Animais , Colite Ulcerativa/diagnóstico , Modelos Animais de Doenças , Progressão da Doença , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/complicações
20.
mBio ; 7(6)2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27935843

RESUMO

Siderophores are small molecular iron chelators that are produced by microbes and whose most notable function is to sequester iron from the host and provide this essential metal nutrient to microbes. Recent studies have proposed additional, noncanonical roles for siderophores, including the acquisition of noniron metals and modulation of host functions. Recently, Holden et al. (V. I. Holden, P. Breen, S. Houle, C. M. Dozois, and M. A. Bachman, mBio 7:e01397-16, 2016, http://dx.doi.org/10.1128/mBio.01397-16) showed that siderophores secreted by Klebsiella pneumoniae during lung infection induce stabilization of the transcription factor HIF-1α, increase the expression of proinflammatory cytokines in the lung, and promote dissemination of K. pneumoniae to the spleen. Thus, their study demonstrated novel roles for siderophores in vivo, beyond iron sequestration. The interaction of siderophores with host cells further promotes the pathogenicity of K. pneumoniae and is likely relevant for other pathogens that also secrete siderophores in the host.


Assuntos
Ferro , Sideróforos , Klebsiella pneumoniae , Metais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA