Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Langmuir ; 37(35): 10510-10520, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34435492

RESUMO

The recently discovered capillary foams are aqueous foams stabilized by the synergistic action of colloidal particles and a small amount of oil. Characteristically, their gas bubbles are coated by a particle-stabilized layer of oil and embedded in a gel network of oil-bridged particles. This unique foam architecture offers opportunities for engineering new foam-related materials and processes, but the necessary understanding of its structure-property relations is still in its infancy. Here, we study the effects of particle wettability, particle volume fraction, and oil-to-particle ratio on the structure and selected properties of capillary foams and use our findings to relate measured foamability, foam stability, and rheological key parameters to the observed foam microstructure. We see that particle wettability not only determines the type of gel network formed but also influences the prevalence of oil droplets included within the foam. Our results further show that the stability and rheology of capillary foams are mainly a function of the particle volume fraction whereas the foamability and observed microstructure are sensitive also to the oil-to-particle ratio. These insights expand our fundamental understanding of capillary foams and will greatly facilitate future work on new foam formulations.

2.
Soft Matter ; 16(29): 6725-6732, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32555866

RESUMO

Aqueous foams are ubiquitous; they appear in products and processes that span the cosmetics, food, and energy industries. The versatile applicability of foams comes as a result of their intrinsic viscous and elastic properties; for example, foams are exploited as drilling fluids in enhanced oil recovery for their high viscosity. Recently, so-called capillary foams were discovered: a class of foams that have excellent stability under static conditions and whose flow properties have so far remained unexplored. The unique architecture of these foams, containing oil-coated bubbles and a gelled network of oil-bridged particles, is expected to affect foam rheology. In this work, we report the first set of rheological data on capillary foams. We study the viscoelastic properties of capillary foams by conducting oscillatory and steady shear tests. We compare our results on the rheological properties of capillary foams to those reported for other aqueous foams. We find that capillary foams, which have low gas volume fractions, exhibit long lasting rheological stability as well as a yielding behavior that is reminiscent of surfactant foams with high gas volume fractions.

3.
Soft Matter ; 14(14): 2724-2734, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29565072

RESUMO

Air bubbles rising through an aqueous medium have been studied extensively and are routinely used for the separation of particulates via froth flotation, a key step in many industrial processes. Oil-coated bubbles can be more effective for separating hydrophilic particles with low affinity for the air-water interface, but the rise dynamics of oil-coated bubbles has not yet been explored. In the present work, we report the first systematic study of the shape and rise trajectory of bubbles engulfed in a layer of oil. Results from direct observation of the coated bubbles with a high-speed camera are compared to computer simulations and confirm a pronounced effect of the oil coat on the bubble dynamics. We consistently find that the oil-coated bubbles display a more spherical shape and straighter trajectory, yet slower rise than uncoated bubbles of comparable size. These characteristics may provide practical benefits for flotation separations with oil-coated bubbles.

4.
J Biol Chem ; 291(3): 1277-88, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26565023

RESUMO

Amyloid propagation requires high levels of sequence specificity so that only molecules with very high sequence identity can form cross-ß-sheet structures of sufficient stringency for incorporation into the amyloid fibril. This sequence specificity presents a barrier to the transmission of prions between two species with divergent sequences, termed a species barrier. Here we study the relative effects of protein sequence, seed conformation, and environment on the species barrier strength and specificity for the yeast prion protein Sup35p from three closely related species of the Saccharomyces sensu stricto group; namely, Saccharomyces cerevisiae, Saccharomyces bayanus, and Saccharomyces paradoxus. Through in vivo plasmid shuffle experiments, we show that the major characteristics of the transmission barrier and conformational fidelity are determined by the protein sequence rather than by the cellular environment. In vitro data confirm that the kinetics and structural preferences of aggregation of the S. paradoxus and S. bayanus proteins are influenced by anions in accordance with their positions in the Hofmeister series, as observed previously for S. cerevisiae. However, the specificity of the species barrier is primarily affected by the sequence and the type of anion present during the formation of the initial seed, whereas anions present during the seeded aggregation process typically influence kinetics rather than the specificity of prion conversion. Therefore, our work shows that the protein sequence and the conformation variant (strain) of the prion seed are the primary determinants of cross-species prion specificity both in vivo and in vitro.


Assuntos
Proteínas Fúngicas/metabolismo , Especificidade de Hospedeiro , Príons/química , Saccharomyces/metabolismo , Biomarcadores/metabolismo , Cloretos/química , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Deleção de Genes , Cinética , Mutação , Fatores de Terminação de Peptídeos/metabolismo , Percloratos/química , Príons/genética , Príons/metabolismo , Príons/patogenicidade , Agregados Proteicos , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces/classificação , Saccharomyces/crescimento & desenvolvimento , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Sequência de Proteína , Especificidade da Espécie , Sulfatos/química
5.
Langmuir ; 33(18): 4511-4519, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28422501

RESUMO

Surfactants can adsorb in fluid-fluid interfaces and lower the interfacial tension. Like surfactants, particles with appropriate wettability can also adsorb in fluid-fluid interfaces. Despite many studies of particle adsorption at fluid interfaces, some confusion persists regarding the ability of (simple, nonamphiphilic) particles to reduce the interfacial tension. In the present work, the interfacial activity of silica nanoparticles at air-water and hexadecane-water interfaces and of ethyl cellulose particles at the interface of water with trimethylolpropane trimethacrylate was analyzed through pendant drop tensiometry. Our measurements strongly suggest that the particles do significantly affect the interfacial tension provided that they have a strong affinity to the interface by virtue of their wettability and that no energy barrier to adsorption prevents them from reaching the interface. A simplistic model that does not explicitly account for any particle-particle interactions is found to yield surprisingly good predictions for the effective interfacial tension in the presence of the adsorbed particles. We further propose that interfacial tension measurements, when combined with information about the particles' wetting properties, can provide a convenient way to estimate the packing density of particles in fluid-fluid interfaces. These results may help to understand and control the assembly of nonamphiphilic nanoparticles at fluid-fluid interfaces, which is relevant to applications ranging from surfactant-free formulations and food technology to oil recovery.

6.
Small ; 12(24): 3309-19, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27167839

RESUMO

Wetting phenomena are ubiquitous in nature and play key functions in various industrial processes and products. When a gas bubble encounters an oil droplet in an aqueous medium, it can experience either partial wetting or complete engulfment by the oil. Each of these morphologies can have practical benefits, and controlling the morphology is desirable for applications ranging from particle synthesis to oil recovery and gas flotation. It is known that the wetting of two fluids within a fluid medium depends on the balance of interfacial tensions and can thus be modified with surfactant additives. It is reported that colloidal particles, too, can be used to promote both wetting and dewetting in multifluid systems. This study demonstrates the surfactant-free tuning and dynamic reconfiguration of bubble-droplet morphologies with the help of cellulosic particles. It further shows that the effect can be attributed to particle adsorption at the fluid interfaces, which can be probed by interfacial tensiometry, making particle-induced transitions in the wetting morphology predictable. Finally, particle adsorption at different rates to air-water and oil-water interfaces can even lead to slow, reentrant wetting behavior not familiar from particle-free systems.

7.
Langmuir ; 31(9): 2669-76, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25689577

RESUMO

Liquid foams are two-phase systems in which a large volume of gas is dispersed as bubbles in a continuous liquid phase. These foams are ubiquitous in nature. In addition, they are found in industrial applications, such as pharmaceutical formulation, food processing, wastewater treatment, construction, and cosmetics. Recently, we reported a new type of foam material, capillary foam, which is stabilized by the synergistic action of particles and a small amount of an immiscible secondary liquid. In this study, we explore in more detail the foam preparation routes. To illustrate some of the potential applications, we create vividly colored wet and dried foams, which are difficult to prepare using traditional methods, and load-bearing porous solids. The combined action of particles and immiscible secondary fluid confers exceptional stability to capillary foams and many options for functionalization, suggesting a wide range of possible applications.


Assuntos
Coloides/química , Cor , Modelos Moleculares , Conformação Molecular , Peso Molecular , Óleos/química , Transição de Fase , Porosidade , Água/química
8.
J Biol Chem ; 288(42): 30300-30308, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-23990463

RESUMO

Ordered, fibrous, self-seeding aggregates of misfolded proteins known as amyloids are associated with important diseases in mammals and control phenotypic traits in fungi. A given protein may adopt multiple amyloid conformations, known as variants or strains, each of which leads to a distinct disease pattern or phenotype. Here, we study the effect of Hofmeister ions on amyloid nucleation and strain generation by the prion domain-containing fragment (Sup35NM) of a yeast protein Sup35p. Strongly hydrated anions (kosmotropes) initiate nucleation quickly and cause rapid fiber elongation, whereas poorly hydrated anions (chaotropes) delay nucleation and mildly affect the elongation rate. For the first time, we demonstrate that kosmotropes favor formation of amyloid strains that are characterized by lower thermostability and higher frangibility in vitro and stronger phenotypic and proliferation patterns effectively in vivo as compared with amyloids formed in chaotropes. These phenomena point to inherent differences in the biochemistry of Hofmeister ions. Our work shows that the ionic composition of a solution not only influences the kinetics of amyloid nucleation but also determines the amyloid strain that is preferentially formed.


Assuntos
Amiloide/química , Fatores de Terminação de Peptídeos/química , Príons/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Amiloide/genética , Amiloide/metabolismo , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Príons/genética , Príons/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Angew Chem Int Ed Engl ; 53(49): 13385-9, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25284445

RESUMO

Liquid foams are familiar from beer, frothed milk, or bubble baths; foams in general also play important roles in oil recovery, lightweight packaging, and insulation. Here a new class of foams is reported, obtained by frothing a suspension of colloidal particles in the presence of a small amount of an immiscible secondary liquid. A unique aspect of these foams, termed capillary foams, is the particle-mediated spreading of the minority liquid around the gas bubbles. The resulting mixed particle/liquid coating can stabilize bubbles against coalescence even when the particles alone cannot. The coated bubbles are further immobilized by entrapment in a network of excess particles connected by bridges of the minority liquid. Capillary foams were prepared with a diverse set of particle/liquid combinations to demonstrate the generality of the phenomenon. The observed foam stability correlates with the particle affinity for the liquid interface formed by spreading the minority liquid at the bubble surface.


Assuntos
Coloides/química , Gases/química , Óleos/química , Soluções , Propriedades de Superfície , Água/química
10.
Langmuir ; 28(33): 12038-43, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22846043

RESUMO

The wetting behavior of solid surfaces can be altered dramatically by introducing surface roughness on the nanometer scale. Some of nature's most fascinating wetting phenomena are associated with surface roughness; they have inspired both fundamental research and the adoption of surface roughness as a design parameter for man-made functional coatings. So far the attention has focused primarily on macroscopic surfaces, but one should expect the wetting properties of colloidal particles to be strongly affected by roughness, too. Particle wettability, in turn, is a key parameter for the adsorption of particles at liquid interfaces and for the industrially important use of particles as emulsion stabilizers; yet, the consequence of particle roughness for emulsion stability remains poorly understood. In order to investigate the matter systematically, we have developed a surface treatment, applicable to micrometer-sized particles and macroscopic surfaces alike, that produces surface coatings with finely tunable nanoscale roughness and identical surface chemistry. Coatings with different degrees of roughness were characterized with regard to their morphology, charging, and wetting properties, and the results were correlated with the stability of emulsions prepared with coated particles of different roughness. We find that the maximum capillary pressure, a metric of the emulsions' resistance to droplet coalescence, varies significantly and in a nonmonotonic fashion with particle roughness. Surface topography and contact angle hysteresis suggest that particle roughness benefits the stability of our emulsions as long as wetting occurs homogeneously (Wenzel regime), whereas the transition toward heterogeneous wetting (Cassie-Baxter regime) is associated with a loss of stability.

12.
J Phys Chem B ; 125(19): 4955-4963, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33961433

RESUMO

Understanding the aggregation mechanism of amyloid proteins, such as Sup35NM, is essential to understanding amyloid diseases. Significant recent work has focused on using the fluorescence of thioflavin T (ThT), which undergoes a red shift when bound to amyloid aggregates, to monitor amyloid fibril formation. In the present study, the progression of the total mass of aggregates during fibril formation is monitored for initial monomer concentrations in order to infer the relevant aggregation mechanisms. This workflow was implemented using the amyloid-forming fragment Sup35NM under different agitation conditions and for initial monomer concentrations spanning 2 orders of magnitude. The analysis suggests that primary nucleation, monomeric elongation, secondary nucleation, and fragmentation might all be relevant, but their relative importance could not be determined unambiguously, despite the large set of high-quality data. Discriminating between the fibril-generating processes is shown to require additional information, such as a fibril length distribution. Using Sup35NM as a case study, a framework for fitting the parameters of arbitrary amyloid aggregation kinetics is developed based on a population balance model (PBM), which resolves not only the total aggregate mass (monitored experimentally via ThT fluorescence) but the entire fibril length distribution over time. In addition to the rich new set of ThT fluorescence data, we have reanalyzed a previously published aggregate size distribution using this method. With the size distribution, it was determined that in the reanalyzed in vitro experiment, secondary nucleation generated significantly fewer new Sup35NM fibrils than fragmentation. The proposed strategy of applying the same PBM to a combination of kinetic data from fluorescence monitoring and experimental fibril length distributions will allow the inference of aggregation mechanisms with far greater confidence than fluorescence studies alone.


Assuntos
Amiloide , Amiloidose , Proteínas Amiloidogênicas , Humanos , Cinética
13.
Langmuir ; 26(22): 16941-8, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-20942432

RESUMO

The electrostatic stabilization of colloidal dispersions is usually considered the domain of polar media only because of the high energetic cost associated with introducing electric charge in nonpolar environments. Nevertheless, some surfactants referred to as "charge control agents" are known to raise the conductivity of liquids with low electric permittivity and to mediate charge stabilization of nonpolar dispersions. Here we study an example of the particularly counterintuitive charging and electrostatic interaction of colloidal particles in a nonpolar solvent caused by nonionic surfactants. PMMA particles in hexane solutions of nonionic sorbitan oleate (Span) surfactants are found to exhibit a field-dependent electrophoretic mobility. Extrapolation to zero field strength yields evidence for large electrostatic surface potentials that decay with increasing surfactant concentration in a fashion reminiscent of electrostatic screening caused by salt in aqueous solutions. The amount of surface charge and screening ions in the nonpolar bulk is further characterized via measurements of the particles' pair interaction energy. The latter is obtained by liquid structure analysis of quasi-2-dimensional equilibrium particle configurations studied with digital video microscopy. In contrast to the behavior reported for systems with ionic surfactants, we observe particle charging and a screened Coulomb type interaction both above and below the surfactant's critical micelle concentration.

14.
J Phys Chem B ; 112(35): 10795-9, 2008 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-18698722

RESUMO

We analyze the interaction forces between charged surfaces across aqueous solutions under the conditions of extreme charge regulation. Under such conditions, interactions may be weaker than those given by the constant potential (CP) boundary conditions. Thermodynamically, even vanishing electrostatic interactions are conceivable. Within the constant regulation approximation, the known results can be extended to this sub-CP regime by adopting regulation parameters outside of the common range. A mean-field lattice model of an adsorbed layer shows that such conditions are most likely found near critical points within the adsorbed layer.

15.
J Phys Chem B ; 112(46): 14609-19, 2008 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-18717544

RESUMO

Interactions between preadsorbed films of poly(vinyl amine) (PVA) of two different line charge densities on silica substrates were studied with the colloidal probe technique based on the atomic force microscope (AFM). The preadsorbed films were prepared by adsorption of PVA from a pH 4 solution without any added salt. The highly charged PVA adsorbs in a flat configuration and in laterally heterogeneous layers, while the more weakly charged PVA analog adsorbs in thicker and more homogeneous films. As revealed by reflectivity measurements, such preadsorbed PVA films are stable in polyelectrolyte-free solutions. However, force measurements with the colloidal probe reveal that their interactions depend strongly on the ionic strength. Upon approach, interactions are dominated by electrostatic diffuse layer overlap forces. Both PVA films have very similar diffuse layer charge densities of about 1.5 mC/m2. Since these values are substantially lower than what would be expected from the total charge of the adsorbed polyelectrolytes measured by reflectivity, we infer that coadsorption of anions represents the principal mechanism in charge neutralization. Upon retraction, the adhesion between the films is dominated by bridging forces due to single polymer chains. Such bridging adhesion becomes progressively important with increasing ionic strength, whereby their range and frequency increase. The work of adhesion due to bridging is about 0.3 mN/m. At low ionic strengths, the films behave differently. While the highly charged PVA shows unspecific adhesion at small distances, the more weakly charged PVA analog shows few adhesion events occurring at long distances.

16.
J Phys Chem B ; 122(19): 4972-4981, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29668283

RESUMO

In vitro formation of highly ordered protein aggregates, amyloids, is influenced by the presence of ions. Here, we have studied the effect of anions on amyloid fibril formation by two different amyloidogenic proteins, human amyloid beta-42 (Aß42), associated with Alzheimer disease and produced recombinantly with an N-terminal methionine (Met-Aß42), and histidine-tagged NM fragment of Sup35 protein (Sup35NM-His6), a yeast release factor controlling protein-based inheritance, at pH values above and below their isoelectric points. We demonstrate here that pH plays a critical role in determining the effect of ions on the aggregation of Met-Aß42 and Sup35NM-His6. Further, the electrophoretic mobilities of Met-Aß42 and Sup35NM-His6 were measured in the presence of different anions at pH above and below the isoelectric points to understand how anions interact with these proteins when they bear a net positive or negative charge. We find that although ion-protein interactions generally follow expectations based on the anion positions within the Hofmeister series, there are qualitative differences in the aggregation behavior of Met-Aß42 and Sup35NM-His6. These differences arise from a competition between nonspecific charge neutralization and screening effects and specific ion adsorption and can be explained by the different biochemical and biophysical properties of Met-Aß42 and Sup35NM-His6.


Assuntos
Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Eletroforese , Humanos , Concentração de Íons de Hidrogênio , Íons/química , Ponto Isoelétrico , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Agregados Proteicos , Ligação Proteica , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/química
17.
Annu Rev Chem Biomol Eng ; 8: 201-226, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28375773

RESUMO

Nanomanufacturing-the fabrication of macroscopic products from well-defined nanoscale building blocks-in a truly scalable and versatile manner is still far from our current reality. Here, we describe the barriers to large-scale nanomanufacturing and identify routes to overcome them. We argue for nanomanufacturing systems consisting of an iterative sequence of synthesis/assembly and separation/sorting unit operations, analogous to those used in chemicals manufacturing. In addition to performance and economic considerations, phenomena unique to the nanoscale must guide the design of each unit operation and the overall process flow. We identify and discuss four key nanomanufacturing process design needs: (a) appropriately selected process break points, (b) synthesis techniques appropriate for large-scale manufacturing,


Assuntos
Nanoestruturas/química , Nanotecnologia/métodos , Desenho de Equipamento , Nanotecnologia/economia , Nanotecnologia/instrumentação , Embalagem de Produtos/economia , Embalagem de Produtos/instrumentação , Embalagem de Produtos/métodos
18.
J Colloid Interface Sci ; 296(2): 496-506, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16243345

RESUMO

Interaction forces between pre-adsorbed layers of branched poly(ethylene imine) (PEI) of different molecular mass were studied with the colloidal probe technique, which is based on atomic force microscopy (AFM). During approach, the long-ranged forces between the surfaces are repulsive due to overlap of diffuse layers down to distances of a few nanometers, whereby regulation of the surface charge is observed. The ionic strength dependence of the observed diffuse layer potentials can be rationalized with a surface charge of 2.3 mC/m2. The forces remain repulsive down to contact, likely due to electro-steric interactions between the PEI layers. These electro-steric forces have a range of a few nanometers and appear to be superposed to the force originating from the overlap of diffuse layers. During retraction of the surfaces, erratic attractive forces are observed due to molecular adhesion events (i.e., bridging adhesion). The frequency of the molecular adhesion events increases with increasing the ionic strength. The force response of the PEI segments is dominated by rubber-like extension profiles. Strong adhesion forces are observed for low molecular mass PEI at short distances directly after separation, while for high molecular mass weaker adhesion forces at larger distances are more common. The work of adhesion was estimated by integrating the retraction force profiles, and it was found to increase with the ionic strength.

19.
J Phys Chem B ; 118(11): 2803-9, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24555903

RESUMO

Monoclonal antibodies are the fastest growing class of biotherapeutics. Ensuring their colloidal and conformational stability in liquid dispersions is crucial for maintaining therapeutic efficacy and economic viability. Sugars are often added to increase the colloidal and thermal stability of protein; however, determining which sugar is the most stabilizing requires time and sample-consuming stability tests. Here we show for a human IgG1 that the extent of stabilization by different sugars can be gauged by analyzing the proteins' diffusive virial coefficient kD. This protein interaction parameter is measured conveniently in a noninvasive, high-throughput manner using dynamic light scattering. It is found to correlate closely with experimental aggregation rate constants at the onset of aggregation and with melting temperatures for antibodies in different sugar solutions. The proposed analysis thus provides a rapid test of the subtle differences between inherently similar sugar-protein interactions; it should greatly facilitate the formulation of protein therapeutics. For the antibody investigated in this study, circular dichroism spectroscopy also yields clues about the mechanism by which sugars improve the thermal stability.


Assuntos
Carboidratos/química , Imunoglobulina G/química , Dicroísmo Circular , Coloides/química , Difusão , Humanos , Modelos Moleculares , Estabilidade Proteica , Soluções , Temperatura , Fatores de Tempo
20.
J Colloid Interface Sci ; 392: 83-89, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23142011

RESUMO

We study the charging behavior of polystyrene and polymethyl methacrylate particles with different functional surface groups in water and in decane containing either ionic (AOT) or nonionic surfactant (Span 85). Electrophoretic mobilities in the nonpolar media are measured as a function of surfactant concentration and the applied electric field strength by phase analysis light scattering (PALS); acid-base characteristics of the particles and the surfactant are investigated via contact angle measurement and interfacial tensiometry, and the residual water content of the non-aqueous dispersions is assessed by Karl Fischer titration. The results suggest a competition of several mechanisms for particle charging in nonpolar media. At high concentrations of the nonionic surfactant, particle charging becomes insensitive to the functional surface groups responsible for charging in aqueous dispersions, but consistent with a charge transfer between the polymer surface and the surfactant due to acid-base interactions, which can be rationalized in terms of measurable acid-base parameters. By contrast, particle charging in nonpolar solutions of the ionic surfactant (with significantly larger amounts of residual water) suggests a strong influence of surface headgroup ionization, and of dissociated surfactants adsorbed to the particle surface.


Assuntos
Alcanos/química , Polimetil Metacrilato/química , Poliestirenos/química , Tensoativos/química , Água/química , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA