Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Am J Hum Genet ; 89(1): 162-7, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21763482

RESUMO

The identification of genetic causes for Mendelian disorders has been based on the collection of multi-incident families, linkage analysis, and sequencing of genes in candidate intervals. This study describes the application of next-generation sequencing technologies to a Swiss kindred presenting with autosomal-dominant, late-onset Parkinson disease (PD). The family has tremor-predominant dopa-responsive parkinsonism with a mean onset of 50.6 ± 7.3 years. Exome analysis suggests that an aspartic-acid-to-asparagine mutation within vacuolar protein sorting 35 (VPS35 c.1858G>A; p.Asp620Asn) is the genetic determinant of disease. VPS35 is a central component of the retromer cargo-recognition complex, is critical for endosome-trans-golgi trafficking and membrane-protein recycling, and is evolutionarily highly conserved. VPS35 c.1858G>A was found in all affected members of the Swiss kindred and in three more families and one patient with sporadic PD, but it was not observed in 3,309 controls. Further sequencing of familial affected probands revealed only one other missense variant, VPS35 c.946C>T; (p.Pro316Ser), in a pedigree with one unaffected and two affected carriers, and thus the pathogenicity of this mutation remains uncertain. Retromer-mediated sorting and transport is best characterized for acid hydrolase receptors. However, the complex has many types of cargo and is involved in a diverse array of biologic pathways from developmental Wnt signaling to lysosome biogenesis. Our study implicates disruption of VPS35 and retromer-mediated trans-membrane protein sorting, rescue, and recycling in the neurodegenerative process leading to PD.


Assuntos
Mutação , Doença de Parkinson/genética , Proteínas de Transporte Vesicular/genética , Adulto , Idade de Início , Sequência de Aminoácidos , Transporte Biológico , Endossomos/genética , Endossomos/metabolismo , Feminino , Regulação da Expressão Gênica , Variação Genética , Genoma Humano , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Linhagem , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Rede trans-Golgi/metabolismo
2.
Am J Hum Genet ; 89(3): 398-406, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21907011

RESUMO

Genome-wide analysis of a multi-incident family with autosomal-dominant parkinsonism has implicated a locus on chromosomal region 3q26-q28. Linkage and disease segregation is explained by a missense mutation c.3614G>A (p.Arg1205His) in eukaryotic translation initiation factor 4-gamma (EIF4G1). Subsequent sequence and genotype analysis identified EIF4G1 c.1505C>T (p.Ala502Val), c.2056G>T (p.Gly686Cys), c.3490A>C (p.Ser1164Arg), c.3589C>T (p.Arg1197Trp) and c.3614G>A (p.Arg1205His) substitutions in affected subjects with familial parkinsonism and idiopathic Lewy body disease but not in control subjects. Despite different countries of origin, persons with EIF4G1 c.1505C>T (p.Ala502Val) or c.3614G>A (p.Arg1205His) mutations appear to share haplotypes consistent with ancestral founders. eIF4G1 p.Ala502Val and p.Arg1205His disrupt eIF4E or eIF3e binding, although the wild-type protein does not, and render mutant cells more vulnerable to reactive oxidative species. EIF4G1 mutations implicate mRNA translation initiation in familial parkinsonism and highlight a convergent pathway for monogenic, toxin and perhaps virally-induced Parkinson disease.


Assuntos
Cromossomos Humanos Par 3/genética , Fator de Iniciação Eucariótico 4G/genética , Doença de Parkinson/genética , Biossíntese de Proteínas/genética , Sequência de Bases , Clonagem Molecular , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Citometria de Fluxo , Ligação Genética , Genótipo , Humanos , Imunoprecipitação , Mitocôndrias/fisiologia , Dados de Sequência Molecular , Mutação de Sentido Incorreto/genética , Linhagem
3.
Cell Rep Methods ; 4(2): 100712, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38382522

RESUMO

Parkinson's disease (PD) is a progressive neurological disorder that manifests clinically as alterations in movement as well as multiple non-motor symptoms including but not limited to cognitive and autonomic abnormalities. Loss-of-function mutations in the gene encoding the ubiquitin E3 ligase Parkin are causal for familial and juvenile PD. Among several therapeutic approaches being explored to treat or improve the prognosis of patients with PD, the use of small molecules able to reinstate or boost Parkin activity represents a potential pharmacological treatment strategy. A major barrier is the lack of high-throughput platforms for the robust and accurate quantification of Parkin activity in vitro. Here, we present two different and complementary Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF/MS)-based approaches for the quantification of Parkin E3 ligase activity in vitro. Both approaches are scalable for high-throughput primary screening to facilitate the identification of Parkin modulators.


Assuntos
Doença de Parkinson , Ubiquitina-Proteína Ligases , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Ubiquitina/genética , Mutação , Doença de Parkinson/diagnóstico
4.
Neurogenetics ; 11(4): 401-8, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20369371

RESUMO

Genetic variation in the leucine-rich repeat and Ig domain containing 1 gene (LINGO1) was recently associated with an increased risk of developing essential tremor (ET) and Parkinson disease (PD). Herein, we performed a comprehensive study of LINGO1 and its paralog LINGO2 in ET and PD by sequencing both genes in patients (ET, n=95; PD, n=96) and by examining haplotype-tagging single-nucleotide polymorphisms (tSNPs) in a multicenter North American series of patients (ET, n=1,247; PD, n= 633) and controls (n=642). The sequencing study identified six novel coding variants in LINGO1 (p.S4C, p.V107M, p.A277T, p.R423R, p.G537A, p.D610D) and three in LINGO2 (p.D135D, p.P217P, p.V565V), however segregation analysis did not support pathogenicity. The association study employed 16 tSNPs at the LINGO1 locus and 21 at the LINGO2 locus. One variant in LINGO1 (rs9652490) displayed evidence of an association with ET (odds ratio (OR) =0.63; P=0.026) and PD (OR=0.54; P=0.016). Additionally, four other tSNPs in LINGO1 and one in LINGO2 were associated with ET and one tSNP in LINGO2 associated with PD (P<0.05). Further analysis identified one tSNP in LINGO1 and two in LINGO2 which influenced age at onset of ET and two tSNPs in LINGO1 which altered age at onset of PD (P<0.05). Our results support a role for LINGO1 and LINGO2 in determining risk for and perhaps age at onset of ET and PD. Further studies are warranted to confirm these findings and to determine the pathogenic mechanisms involved.


Assuntos
Tremor Essencial/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Genéticos , Razão de Chances , Análise de Sequência de DNA
5.
J Alzheimers Dis ; 15(1): 97-107, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18780970

RESUMO

The objective of this study was to determine if the phosphodiesterase 5 (PDE-5) inhibitor, sildenafil, could be used as a neuroprotective agent in a chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) murine model of Parkinson's disease. The underlying hypothesis of these studies is that blockade of PDE-5 catabolism of cGMP will attenuate the loss of nigrostriatal dopamine (NSDA) neurons following chronic neurotoxin exposure. Chronic MPTP-treated mice were administered sildenafil using three different regimens. Animals were: 1) treated with sildenafil and then exposed to chronic MPTP; 2) treated concurrently with sildenafil and MPTP; and 3) first exposed to MPTP and subsequently treated with sildenafil. End points of neurotoxicity included dopamine (DA) and tyrosine hydroxylase (TH) concentrations in NSDA axon terminals in the striatum, and stereological cell counts of TH immunoreactive neurons in the substantia nigra. Results reveal that sildenafil did not prevent neurotoxicity produced by chronic MPTP exposure regardless of the treatment paradigms employed. On the other hand, sildenafil did not produce any deleterious effect on NSDA neuron function nor did it potentiate the neurotoxic effects of MPTP. These results suggest that sildenafil would not accelerate DA cell loss when used as a treatment for erectile dysfunction in men diagnosed with Parkinson's disease.


Assuntos
Corpo Estriado/efeitos dos fármacos , Dopamina/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , Inibidores de Fosfodiesterase/farmacologia , Inibidores de Fosfodiesterase/uso terapêutico , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Substância Negra/efeitos dos fármacos , Sulfonas/farmacologia , Sulfonas/uso terapêutico , Animais , Axônios/metabolismo , Western Blotting , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Inibidores da Fosfodiesterase 5 , Purinas/farmacologia , Purinas/uso terapêutico , Citrato de Sildenafila , Tirosina 3-Mono-Oxigenase/metabolismo
6.
Brain Res ; 1214: 1-10, 2008 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-18462709

RESUMO

Dopamine (DA) neurons comprising the A11 diencephalospinal system represent the major source of DA innervation to the spinal cord. These neurons project axons throughout the rostrocaudal extent of the spinal cord, terminating predominantly in the dorsal horn. Loss of DA-mediated sensorimotor function in the lumbar segment of spinal cord is implicated in the etiology of Restless Legs Syndrome (RLS), which is more prevalent in females as compared with males. The purpose of the present study was to compare the density (DA concentrations) and catabolic activity (3,4-dihydroxyphenylacetic acid; DOPAC) of A11 DA neurons innervating the lumbar spinal cord of male and female C57/BL6 mice, and to determine if there is a sexual difference in the regulation of these neurons by D2 autoreceptor-mediated mechanisms. DA concentrations in the lumbar spinal cord were higher in males, suggesting a greater A11 DA innervation as compared with females, whereas there was no sexual difference in the activity (DOPAC/DA ratio) of these DA neurons under basal conditions. Blockade of D2 receptors with raclopride caused a significant increase in the DOPAC/DA ratio in the striatum and nucleus accumbens in both males and females, but had no effect in the spinal cord. Blockade of neuronal impulse flow and DA release with gamma-butyrolactone (GBL) increased DA concentrations in the spinal cord, but this increase was not prevented by pretreatment with the D2 agonist quinelorane. These results are consistent with the conclusion that A11 diencephalospinal DA neurons in both males and females lack presynaptic synthesis modulating D2 autoreceptors.


Assuntos
Diencéfalo/citologia , Dopamina/metabolismo , Neurônios/metabolismo , Receptores de Dopamina D2/fisiologia , Caracteres Sexuais , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , 4-Butirolactona/farmacologia , Análise de Variância , Animais , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Interações Medicamentosas , Eletroquímica/métodos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Quinolinas/farmacologia , Racloprida/farmacologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo
7.
Neurotoxicology ; 25(5): 761-9, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15288507

RESUMO

The functional role of alpha-synuclein in the pathogenesis of Parkinson's disease (PD) is not fully understood. Systemic exposure of alpha-synuclein-deficient mice to neurotoxins provides a direct approach to evaluate how alpha-synuclein may mediate cell death in a common murine model of PD. To this end, wild-type and homozygous alpha-synuclein knock-out mice were treated with sub-chronic and prolonged, chronic exposure to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In the sub-chronic model, wild-type and alpha-synuclein knock-out mice were treated for five consecutive days with MPTP (1-25 mg/kg, s.c.) or vehicle, and sacrificed 3 days following the last injection. The prolonged, chronic model consisted of two injections of MPTP (1-20 mg/kg, s.c.) per week for 5 weeks, with co-administration of probenecid (250 mg/kg, i.p.), and animals were sacrificed 3 weeks following the last injection. Sub-chronic administration of MPTP caused a dramatic, dose-dependent decrease in striatal dopamine (DA) concentrations, while an attenuated response was observed in alpha-synuclein knock-out mice. Similarly, prolonged, chronic administration of MPTP produced a dose-dependent decrease in striatal DA concentrations, and a corresponding loss of striatal vesicular monoamine transporter (VMAT-2) protein in wild-type mice. However, mice lacking alpha-synuclein had an attenuated loss of striatal DA concentrations, while no loss of striatal VMAT-2 protein was observed. Both sub-chronic and prolonged, chronic administration of MPTP caused an increase in the 3,4-dihydroxyphenylacetic acid (DOPAC) to DA ratio in wild-type mice, but not in mice lacking alpha-synuclein. Despite attenuated toxicity, elevated lactate concentrations were observed in alpha-synuclein knock-out mice following prolonged, chronic MPTP administration. The results of this study provide evidence that alpha-synuclein null mice have an attenuated response to the toxic effects of MPTP exposure, even over prolonged periods of time and that the biochemical sequela of a protracted insult to nigrostriatal DA neurons are distinct between mice with and without alpha-synuclein expression.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Dopaminérgicos/farmacologia , Dopamina/metabolismo , Proteínas de Membrana Transportadoras , Neostriado/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Neuropeptídeos , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Western Blotting , Relação Dose-Resposta a Droga , Ácido Láctico/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neostriado/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Substância Negra/metabolismo , Sinucleínas , Proteínas Vesiculares de Transporte de Aminas Biogênicas , Proteínas Vesiculares de Transporte de Monoamina , alfa-Sinucleína
8.
Neurotoxicology ; 33(3): 321-31, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22342763

RESUMO

Hypothalamic tuberoinfundibular dopamine (TIDA) neurons remain unaffected in Parkinson disease (PD) while there is significant degeneration of midbrain nigrostriatal dopamine (NSDA) neurons. A similar pattern of susceptibility is observed in acute and chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse and rotenone rat models of degeneration. It is not known if the resistance of TIDA neurons is a constitutive or induced cell-autonomous phenotype for this unique subset of DA neurons. In the present study, treatment with a single injection of MPTP (20 mg/kg; s.c.) was employed to examine the response of TIDA versus NSDA neurons to acute injury. An acute single dose of MPTP caused an initial loss of DA from axon terminals of both TIDA and NSDA neurons, with recovery occurring solely in TIDA neurons by 16 h post-treatment. Initial loss of DA from axon terminals was dependent on a functional dopamine transporter (DAT) in NSDA neurons but DAT-independent in TIDA neurons. The active metabolite of MPTP, 1-methyl, 4-phenylpyradinium (MPP+), reached higher concentration and was eliminated slower in TIDA compared to NSDA neurons, which indicates that impaired toxicant bioactivation or distribution is an unlikely explanation for the observed resistance of TIDA neurons to MPTP exposure. Inhibition of protein synthesis prevented TIDA neuron recovery, suggesting that the ability to recover from injury was dependent on an induced, rather than a constitutive cellular mechanism. Further, there were no changes in total tyrosine hydroxylase (TH) expression following MPTP, indicating that up-regulation of the rate-limiting enzyme in DA synthesis does not account for TIDA neuronal recovery. Differential candidate gene expression analysis revealed a time-dependent increase in parkin and ubiquitin carboxyl-terminal hydrolase-L1 (UCH-L1) expression (mRNA and protein) in TIDA neurons during recovery from injury. Parkin expression was also found to increase with incremental doses of MPTP. The increase in parkin expression occurred specifically within TIDA neurons, suggesting that these neurons have an intrinsic ability to up-regulate parkin in response to MPTP-induced injury. These data suggest that TIDA neurons have a compensatory mechanism to deal with toxicant exposure and increased oxidative stress, and this unique TIDA neuron phenotype provides a platform for dissecting the mechanisms involved in the natural resistance of central DA neurons following toxic insult.


Assuntos
Gânglios da Base/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Intoxicação por MPTP/etiologia , Degeneração Estriatonigral/induzido quimicamente , Substância Negra/efeitos dos fármacos , Ubiquitina Tiolesterase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/administração & dosagem , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/metabolismo , Animais , Gânglios da Base/enzimologia , Gânglios da Base/patologia , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/enzimologia , Neurônios Dopaminérgicos/patologia , Hipotálamo/enzimologia , Hipotálamo/patologia , Injeções Subcutâneas , Intoxicação por MPTP/enzimologia , Intoxicação por MPTP/genética , Intoxicação por MPTP/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , RNA Mensageiro/metabolismo , Recuperação de Função Fisiológica , Degeneração Estriatonigral/enzimologia , Degeneração Estriatonigral/genética , Degeneração Estriatonigral/patologia , Substância Negra/enzimologia , Substância Negra/patologia , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina-Proteína Ligases/genética , Regulação para Cima
9.
J Neuroimmune Pharmacol ; 7(3): 533-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22639229

RESUMO

Motor dysfunctions of Parkinson Disease (PD) are due to the progressive loss of midbrain nigrostriatal dopamine (NSDA) neurons. Evidence suggests a role for cannabinoid receptors in the neurodegeneration of these neurons following neurotoxicant-induced injury. This work evaluates NSDA neurons in CB1/CB2 knockout (KO) mice and tests the hypothesis that CB1/CB2 KO mice are more susceptible to neurotoxicant exposure. NSDA neuronal indices were assessed using unbiased stereological cell counting, high pressure liquid chromatography coupled with electrochemical detection or mass spectrometry, and Western blot. Results reveal that CB1 and CB2 cannabinoid receptor signaling is not necessary for the maintenance of a normally functioning NSDA neuronal system. Mice lacking CB1 and CB2 receptors were found to be equally susceptible to the neurotoxicant 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP). These studies support the use of CB1/CB2 KO mice for investigating the cannabinoid receptor-mediated regulation of the NSDA neuronal system in models of PD.


Assuntos
Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/metabolismo , Intoxicação por MPTP/metabolismo , Receptor CB1 de Canabinoide/deficiência , Receptor CB2 de Canabinoide/deficiência , Receptores de Dopamina D2/metabolismo , Substância Negra/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Corpo Estriado/efeitos dos fármacos , Antagonistas dos Receptores de Dopamina D2 , Neurônios Dopaminérgicos/efeitos dos fármacos , Intoxicação por MPTP/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Dopamina D2/agonistas , Substância Negra/efeitos dos fármacos
10.
Mol Neurodegener ; 7: 25, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22647713

RESUMO

Mutations in the LRRK2 gene are the most common cause of genetic Parkinson's disease. Although the mechanisms behind the pathogenic effects of LRRK2 mutations are still not clear, data emerging from in vitro and in vivo models suggests roles in regulating neuronal polarity, neurotransmission, membrane and cytoskeletal dynamics and protein degradation.We created mice lacking exon 41 that encodes the activation hinge of the kinase domain of LRRK2. We have performed a comprehensive analysis of these mice up to 20 months of age, including evaluation of dopamine storage, release, uptake and synthesis, behavioral testing, dendritic spine and proliferation/neurogenesis analysis.Our results show that the dopaminergic system was not functionally comprised in LRRK2 knockout mice. However, LRRK2 knockout mice displayed abnormal exploratory activity in the open-field test. Moreover, LRRK2 knockout mice stayed longer than their wild type littermates on the accelerated rod during rotarod testing. Finally, we confirm that loss of LRRK2 caused degeneration in the kidney, accompanied by a progressive enhancement of autophagic activity and accumulation of autofluorescent material, but without evidence of biphasic changes.


Assuntos
Dopamina/metabolismo , Mutação/genética , Doença de Parkinson/genética , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Autofagia/genética , Comportamento Animal , Rim/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA