Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 118(7): 2781-2803, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33871054

RESUMO

Human-induced pluripotent stem cells (iPSCs) have great potential for disease modeling. However, generating iPSC-derived models to study brain diseases remains a challenge. In particular, the ability to recapitulate cerebellar development in vitro is still limited. We presented a reproducible and scalable production of cerebellar organoids by using the novel single-use Vertical-Wheel bioreactors, in which functional cerebellar neurons were obtained. Here, we evaluate the global gene expression profiles by RNA sequencing (RNA-seq) across cerebellar differentiation, demonstrating a faster cerebellar commitment in this novel dynamic differentiation protocol. Furthermore, transcriptomic profiles suggest a significant enrichment of extracellular matrix (ECM) in dynamic-derived cerebellar organoids, which can better mimic the neural microenvironment and support a consistent neuronal network. Thus, an efficient generation of organoids with cerebellar identity was achieved for the first time in a continuous process using a dynamic system without the need of organoids encapsulation in ECM-based hydrogels, allowing the possibility of large-scale production and application in high-throughput processes. The presence of factors that favors angiogenesis onset was also detected in dynamic conditions, which can enhance functional maturation of cerebellar organoids. We anticipate that large-scale production of cerebellar organoids may help developing models for drug screening, toxicological tests, and studying pathological pathways involved in cerebellar degeneration.


Assuntos
Cerebelo/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Organoides/metabolismo , RNA-Seq , Cerebelo/citologia , Matriz Extracelular/metabolismo , Humanos , Hidrogéis/química , Células-Tronco Pluripotentes Induzidas/citologia , Organoides/citologia
2.
Stem Cell Res ; 61: 102757, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35339881

RESUMO

Angelman Syndrome is a rare neurodevelopmental disorder caused by several (epi)genetic alterations. The patients present strong neurological impairment due to the absence of a functional maternal UBE3A gene in neurons. Here, we generated and characterized a new induced pluripotent stem cell (iPSC) line from a female child with Angelman syndrome harbouring a class II deletion. iPSCs were reprogrammed from fibroblasts using Sendai viruses. The new iPSCs express pluripotency markers, are capable of trilineage in vitro differentiation and have the expected imprinting status of Angelman syndrome. These iPSCs are a valuable tool to elucidate the pathophysiological mechanisms associated with this disease.


Assuntos
Síndrome de Angelman , Células-Tronco Pluripotentes Induzidas , Síndrome de Angelman/genética , Diferenciação Celular , Criança , Deleção Cromossômica , Cromossomos , Cromossomos Humanos Par 15 , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios
3.
Front Mol Neurosci ; 13: 119, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733202

RESUMO

Phytocannabinoids are psychotropic substances ofcannabis with the ability to bind endocannabinoid (eCB) receptors that regulate synaptic activity in the central nervous system (CNS). Synthetic cannabinoids (SCs) are synthetic analogs of Δ9-tetrahydrocannabinol (Δ9-THC), the psychotropic compound of cannabis, acting as agonists of eCB receptor CB1. SC is an easily available and popular alternative to cannabis, and their molecular structure is always changing, increasing the hazard for the general population. The popularity of cannabis and its derivatives may lead, and often does, to a child's exposure to cannabis both in utero and through breastfeeding by a drug-consuming mother. Prenatal exposure to cannabis has been associated with an altered rate of mental development and significant changes in nervous system functioning. However, the understanding of mechanisms of its action on developing the human CNS is still lacking. We investigated the effect of continuous exposure to cannabinoids on developing human neurons, mimicking the prenatal exposure by drug-consuming mother. Two human induced pluripotent stem cells (hiPSC) lines were induced to differentiate into neuronal cells and exposed for 37 days to cannabidiol (CBD), Δ9-THC, and two SCs, THJ-018 and EG-018. Both Δ9-THC and SC, at 10 µM, promote precocious neuronal and glial differentiation, while CBD at the same concentration is neurotoxic. Neurons exposed to Δ9-THC and SC show abnormal functioning of voltage-gated calcium channels when stimulated by extracellular potassium. In sum, all studied substances have a profound impact on the developing neurons, highlighting the importance of thorough research on the impact of prenatal exposure to natural and SC.

4.
J Vis Exp ; (160)2020 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-32597849

RESUMO

The cerebellum plays a critical role in the maintenance of balance and motor coordination, and a functional defect in different cerebellar neurons can trigger cerebellar dysfunction. Most of the current knowledge about disease-related neuronal phenotypes is based on postmortem tissues, which makes understanding of disease progression and development difficult. Animal models and immortalized cell lines have also been used as models for neurodegenerative disorders. However, they do not fully recapitulate human disease. Human induced pluripotent stem cells (iPSCs) have great potential for disease modeling and provide a valuable source for regenerative approaches. In recent years, the generation of cerebral organoids from patient-derived iPSCs improved the prospects for neurodegenerative disease modeling. However, protocols that produce large numbers of organoids and a high yield of mature neurons in 3D culture systems are lacking. The protocol presented is a new approach for reproducible and scalable generation of human iPSC-derived organoids under chemically-defined conditions using scalable single-use bioreactors, in which organoids acquire cerebellar identity. The generated organoids are characterized by the expression of specific markers at both mRNA and protein level. The analysis of specific groups of proteins allows the detection of different cerebellar cell populations, whose localization is important for the evaluation of organoid structure. Organoid cryosectioning and further immunostaining of organoid slices are used to evaluate the presence of specific cerebellar cell populations and their spatial organization.


Assuntos
Reatores Biológicos , Cerebelo/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Organoides/citologia , Coloração e Rotulagem , Animais , Técnicas de Cultura de Células , Humanos , Neurônios/citologia , Organoides/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-32117945

RESUMO

The cerebellum plays a critical role in all vertebrates, and many neurological disorders are associated with cerebellum dysfunction. A major limitation in cerebellar research has been the lack of adequate disease models. As an alternative to animal models, cerebellar neurons differentiated from pluripotent stem cells have been used. However, previous studies only produced limited amounts of Purkinje cells. Moreover, in vitro generation of Purkinje cells required co-culture systems, which may introduce unknown components to the system. Here we describe a novel differentiation strategy that uses defined medium to generate Purkinje cells, granule cells, interneurons, and deep cerebellar nuclei projection neurons, that self-formed and differentiated into electrically active cells. Using a defined basal medium optimized for neuronal cell culture, we successfully promoted the differentiation of cerebellar precursors without the need for co-culturing. We anticipate that our findings may help developing better models for the study of cerebellar dysfunctions, while providing an advance toward the development of autologous replacement strategies for treating cerebellar degenerative diseases.

6.
Front Cell Dev Biol ; 8: 610427, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363173

RESUMO

Engineering brain organoids from human induced pluripotent stem cells (hiPSCs) is a powerful tool for modeling brain development and neurological disorders. Rett syndrome (RTT), a rare neurodevelopmental disorder, can greatly benefit from this technology, since it affects multiple neuronal subtypes in forebrain sub-regions. We have established dorsal and ventral forebrain organoids from control and RTT patient-specific hiPSCs recapitulating 3D organization and functional network complexity. Our data revealed a premature development of the deep-cortical layer, associated to the formation of TBR1 and CTIP2 neurons, and a lower expression of neural progenitor/proliferative cells in female RTT dorsal organoids. Moreover, calcium imaging and electrophysiology analysis demonstrated functional defects of RTT neurons. Additionally, assembly of RTT dorsal and ventral organoids revealed impairments of interneuron's migration. Overall, our models provide a better understanding of RTT during early stages of neural development, demonstrating a great potential for personalized diagnosis and drug screening.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA