Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Horm Behav ; 164: 105594, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38917776

RESUMO

Menopause is an endocrine shift leading to increased vulnerability for cognitive impairment and dementia risk factors, in part due to loss of neuroprotective circulating estrogens. Systemic replacement of estrogen post-menopause has limitations, including risk for estrogen-sensitive cancers. A promising therapeutic approach therefore might be to deliver estrogen only to the brain. We examined whether we could enhance cognitive performance by delivering estrogen exclusively to the brain in ovariectomized mice (a surgical menopause model). We treated mice with the prodrug 10ß,17ß-dihydroxyestra-1,4-dien-3-one (DHED), which can be administered systemically but is converted to 17ß-estradiol only in the brain. Young and middle-aged C57BL/6 J mice received ovariectomy and subcutaneous implant containing vehicle or DHED and underwent cognitive testing to assess memory after 1-3.5 months of treatment. Low and medium doses of DHED did not alter metabolic status in middle-aged mice. In both age groups, DHED treatment improved spatial memory in ovariectomized mice. Additional testing in middle-aged mice showed that DHED treatment improved working and recognition memory in ovariectomized mice. These results lay the foundation for future studies determining if this intervention is as efficacious in models of dementia with comorbid risk factors.

2.
Am J Physiol Regul Integr Comp Physiol ; 322(4): R319-R325, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35107023

RESUMO

Hypertension is a primary risk factor for the development of cardiovascular disease. Mechanisms controlling blood pressure (BP) in men and women are still being investigated; however, there is increasing evidence supporting a role for the innate immune system. Specifically, Toll-like receptors (TLRs), and TLR4 in particular, have been implicated in the development of hypertension in male spontaneously hypertensive rats (SHR). Despite established sex differences in BP control and inflammatory markers in hypertensive males and females, little is known regarding the role of TLR4 in hypertension in females. Our hypotheses were that male SHR have greater TLR4 expression compared with females, and that sex differences in TLR4 contribute to sex differences in BP and the T cell profile. To test these hypotheses, initial studies measured renal TLR4 protein expression in 13-wk-old male and female SHR. Additional SHR were implanted with telemetry devices and randomized to treatment with either IgG or TLR4 neutralizing antibodies. Untreated control male SHR have greater TLR4 protein expression in the kidney compared with females. However, treatment with TLR4 neutralizing antibody for 2 wk did not significantly alter BP in either male or female SHR. Interestingly, neutralization of TLR4 increased renal CD3+ T cells in female SHR, with no alteration in CD4+ T cells or CD8+ T cells in either sex. Taken together, our data indicate that although male SHR have greater renal TLR4 expression than females, TLR4 does not contribute to the higher BP and more proinflammatory renal T cell profile in males versus females.


Assuntos
Hipertensão , Caracteres Sexuais , Animais , Pressão Sanguínea/fisiologia , Linfócitos T CD8-Positivos/metabolismo , Feminino , Humanos , Rim/metabolismo , Masculino , Ratos , Ratos Endogâmicos SHR , Receptor 4 Toll-Like/metabolismo
3.
Clin Sci (Lond) ; 135(19): 2329-2339, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34585239

RESUMO

Over the past decade there has been increasing support for a role of the immune system in the development of hypertension. Our lab has previously reported that female spontaneously hypertensive rats (SHRs) have a blood pressure (BP)-dependent increase in anti-inflammatory renal regulatory T cells (Tregs), corresponding to lower BP compared with males. However, little is known regarding the mechanism for greater renal Tregs in females. The current study was designed to test the hypothesis that the greater relative abundance of renal Tregs in female SHR is due to greater Treg production. To test this hypothesis, T cell profiles were measured in the spleen by flow cytometry in male and female SHR at 5 and 14 weeks of age. Splenic Tregs did not differ between males and females, suggesting sex differences in renal Tregs is not due to differences in production. To assess the role of the spleen in sex differences in renal Tregs and BP control, rats were randomized to receive sham surgery (CON) or splenectomy (SPLNX) at 12 weeks of age and implanted with telemeters to measure BP. After 2 weeks, kidneys were harvested for flow cytometric analysis of T cells. Splenectomy increased BP in both sexes after 2 weeks. Renal Tregs decreased in both sexes after splenectomy, abolishing the sex differences in renal Tregs. In conclusion, splenic Tregs were comparable in male and female SHRs, suggesting that sex differences in renal Tregs is due to differences in renal Treg recruitment, not Treg production.


Assuntos
Pressão Sanguínea , Hipertensão/imunologia , Rim/imunologia , Baço/cirurgia , Esplenectomia , Linfócitos T Reguladores/imunologia , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Rim/metabolismo , Masculino , Fenótipo , Ratos Endogâmicos SHR , Caracteres Sexuais , Fatores Sexuais , Baço/imunologia , Baço/metabolismo , Linfócitos T Reguladores/metabolismo
4.
Int J Mol Sci ; 20(18)2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31540057

RESUMO

In this study, we used macrophage RAW264.7 cells to elucidate the molecular mechanism underlying the anti-inflammatory actions of niacin. Anti-inflammatory actions of niacin and a possible role of its receptor GPR109A have been studied previously. However, the precise molecular mechanism of niacin's action in reducing inflammation through GPR109A is unknown. Here we observed that niacin reduced the translocation of phosphorylated nuclear kappa B (p-NF-κB) induced by lipopolysaccharide (LPS) in the nucleus of RAW264.7 cells. The reduction in the nuclear translocation in turn decreased the expression of pro-inflammatory cytokines IL-1ß, IL-6 in RAW264.7 cells. We observed a decrease in the nuclear translocation of p-NF-κB and the expression of inflammatory cytokines after knockdown of GPR109A in RAW264.7 cells. Our results suggest that these molecular actions of niacin are mediated via its receptor GPR109A (also known as HCAR2) by controlling the translocation of p-NF-κB to the nucleus. Overall, our findings suggest that niacin treatment may have potential in reducing inflammation by targeting GPR109A.


Assuntos
Anti-Inflamatórios/farmacologia , Niacina/farmacologia , Doença de Parkinson/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Niacina/sangue , Niacina/uso terapêutico , Doença de Parkinson/metabolismo , Células RAW 264.7 , Receptores Acoplados a Proteínas G/sangue , Receptores Acoplados a Proteínas G/genética
5.
bioRxiv ; 2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37609180

RESUMO

Menopause is a major endocrinological shift that leads to an increased vulnerability to the risk factors for cognitive impairment and dementia. This is thought to be due to the loss of circulating estrogens, which exert many potent neuroprotective effects in the brain. Systemic replacement of estrogen post-menopause has many limitations, including increased risk for estrogen-sensitive cancers. A more promising therapeutic approach therefore might be to deliver estrogen only to the brain thus limiting adverse peripheral side effects. We examined whether we could enhance cognitive performance by delivering estrogen exclusively to the brain in post-menopausal mice. We modeled surgical menopause via bilateral ovariectomy (OVX). We treated mice with the pro-drug 10ß,17ß-dihydroxyestra-1,4-dien-3-one (DHED), which can be administered systemically but is converted to 17ß-estradiol only in the brain. Young (2.5-month) and middle-aged (11-month-old) female C57BL/6J mice received ovariectomy and a subcutaneous implant containing vehicle (cholesterol) or DHED. At 3.5 months old (young group) and 14.5 months old (middle-aged group), mice underwent behavior testing to assess memory. DHED did not significantly alter metabolic status in middle-aged, post-menopausal mice. In both young and middle-aged mice, the brain-specific estrogen DHED improved spatial memory. Additional testing in middle-aged mice also showed that DHED improved working and recognition memory. These promising results lay the foundation for future studies aimed at determining if this intervention is as efficacious in models of dementia that have comorbid risk factors.

6.
Hypertension ; 75(6): 1615-1623, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32336228

RESUMO

Hypertension is the most common risk factor for cardiovascular disease, causing over 18 million deaths a year. Although the mechanisms controlling blood pressure (BP) in either sex remain largely unknown, T cells play a critical role in the development of hypertension. Further evidence supports a role for the immune system in contributing to sex differences in hypertension. The goal of the current study was to first, determine the impact of sex on the renal T-cell profiles in DOCA-salt hypertensive males and females and second, test the hypothesis that greater numbers of T regulatory cells (Tregs) in females protect against DOCA-salt-induced increases in BP and kidney injury. Male rats displayed greater increases in BP than females following 3 weeks of DOCA-salt treatment, although increases in renal injury were comparable between the sexes. DOCA-salt treatment resulted in an increase in proinflammatory T cells in both sexes; however, females had more anti-inflammatory Tregs than males. Additional male and female DOCA-salt rats were treated with anti-CD25 to decrease Tregs. Decreasing Tregs significantly increased BP only in females, thereby abolishing the sex difference in the BP response to DOCA-salt. This data supports the hypothesis that Tregs protect against the development of hypertension and are particularly important for the control of BP in females.


Assuntos
Acetato de Desoxicorticosterona/farmacologia , Hipertensão , Rim , Fatores Sexuais , Linfócitos T Reguladores/imunologia , Animais , Pressão Sanguínea/imunologia , Fatores de Risco Cardiometabólico , Contagem de Células/métodos , Feminino , Aromatizantes/farmacologia , Hipertensão/imunologia , Hipertensão/fisiopatologia , Subunidade alfa de Receptor de Interleucina-2/antagonistas & inibidores , Rim/imunologia , Rim/patologia , Masculino , Mineralocorticoides/farmacologia , Fatores de Proteção , Ratos , Cloreto de Sódio na Dieta/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA