Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Neurobiol Dis ; 191: 106410, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38220131

RESUMO

Integrins are receptors that have been linked to various brain disorders, including Alzheimer's disease (AD), the most prevalent neurodegenerative disorder. While Integrin beta-3 (ITGB3) is known to participate in multiple cellular processes such as adhesion, migration, and signaling, its specific role in AD remains poorly understood, particularly in astrocytes, the main glial cell type in the brain. In this study, we investigated alterations in ITGB3 gene and protein expression during aging in different brain regions of the 5xFAD mouse model of AD and assessed the interplay between ITGB3 and astrocytes. Primary cultures from adult mouse brains were used to gain further insight into the connection between ITGB3 and amyloid beta (Aß) in astrocytes. In vivo studies showed a correlation between ITGB3 and the astrocytic marker GFAP in the 5xFAD brains, indicating its association with reactive astrocytes. In vitro studies revealed increased gene expression of ITGB3 upon Aß treatment. Our findings underscore the potential significance of ITGB3 in astrocyte reactivity in the context of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Astrócitos/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Neuroglia/metabolismo , Regulação para Cima
2.
Neurobiol Dis ; 170: 105753, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35569719

RESUMO

Under physiological conditions in vivo astrocytes internalize and degrade neuronal mitochondria in a process called transmitophagy. Mitophagy is widely reported to be impaired in neurodegeneration but it is unknown whether and how transmitophagy is altered in Alzheimer's disease (AD). Here we report that the internalization of neuronal mitochondria is significantly increased in astrocytes isolated from AD mouse brains. We also demonstrate that the degradation of neuronal mitochondria by astrocytes is increased in AD mice at the age of 6 months onwards. Furthermore, we demonstrate for the first time a similar phenomenon between human neurons and AD astrocytes, and in murine hippocampi in vivo. The results suggest the involvement of S100a4 in impaired mitochondrial transfer between neurons and AD astrocytes together with significant increases in the mitophagy regulator and reactive oxygen species in aged AD astrocytes. These findings demonstrate altered neuron-supporting functions of AD astrocytes and provide a starting point for studying the molecular mechanisms of transmitophagy in AD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Astrócitos/metabolismo , Camundongos , Mitofagia , Neurônios/metabolismo
3.
J Neuroinflammation ; 19(1): 147, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35706029

RESUMO

BACKGROUND: Microglia are the endogenous immune cells of the brain and act as sensors of pathology to maintain brain homeostasis and eliminate potential threats. In Alzheimer's disease (AD), toxic amyloid beta (Aß) accumulates in the brain and forms stiff plaques. In late-onset AD accounting for 95% of all cases, this is thought to be due to reduced clearance of Aß. Human genome-wide association studies and animal models suggest that reduced clearance results from aberrant function of microglia. While the impact of neurochemical pathways on microglia had been broadly studied, mechanical receptors regulating microglial functions remain largely unexplored. METHODS: Here we showed that a mechanotransduction ion channel, PIEZO1, is expressed and functional in human and mouse microglia. We used a small molecule agonist, Yoda1, to study how activation of PIEZO1 affects AD-related functions in human induced pluripotent stem cell (iPSC)-derived microglia-like cells (iMGL) under controlled laboratory experiments. Cell survival, metabolism, phagocytosis and lysosomal activity were assessed using real-time functional assays. To evaluate the effect of activation of PIEZO1 in vivo, 5-month-old 5xFAD male mice were infused daily with Yoda1 for two weeks through intracranial cannulas. Microglial Iba1 expression and Aß pathology were quantified with immunohistochemistry and confocal microscopy. Published human and mouse AD datasets were used for in-depth analysis of PIEZO1 gene expression and related pathways in microglial subpopulations. RESULTS: We show that PIEZO1 orchestrates Aß clearance by enhancing microglial survival, phagocytosis, and lysosomal activity. Aß inhibited PIEZO1-mediated calcium transients, whereas activation of PIEZO1 with a selective agonist, Yoda1, improved microglial phagocytosis resulting in Aß clearance both in human and mouse models of AD. Moreover, PIEZO1 expression was associated with a unique microglial transcriptional phenotype in AD as indicated by assessment of cellular metabolism, and human and mouse single-cell datasets. CONCLUSION: These results indicate that the compromised function of microglia in AD could be improved by controlled activation of PIEZO1 channels resulting in alleviated Aß burden. Pharmacological regulation of these mechanoreceptors in microglia could represent a novel therapeutic paradigm for AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Células-Tronco Pluripotentes Induzidas , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Estudo de Associação Genômica Ampla , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Canais Iônicos/metabolismo , Masculino , Mecanotransdução Celular , Camundongos , Camundongos Transgênicos , Microglia/metabolismo
4.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142627

RESUMO

Neuroinflammation has a major role in several brain disorders including Alzheimer's disease (AD), yet at present there are no effective anti-neuroinflammatory therapeutics available. Copper(II) complexes of bis(thiosemicarbazones) (CuII(gtsm) and CuII(atsm)) have broad therapeutic actions in preclinical models of neurodegeneration, with CuII(atsm) demonstrating beneficial outcomes on neuroinflammatory markers in vitro and in vivo. These findings suggest that copper(II) complexes could be harnessed as a new approach to modulate immune function in neurodegenerative diseases. In this study, we examined the anti-neuroinflammatory action of several low-molecular-weight, charge-neutral and lipophilic copper(II) complexes. Our analysis revealed that one compound, a thiosemicarbazone-pyridylhydrazone copper(II) complex (CuL5), delivered copper into cells in vitro and increased the concentration of copper in the brain in vivo. In a primary murine microglia culture, CuL5 was shown to decrease secretion of pro-inflammatory cytokine macrophage chemoattractant protein 1 (MCP-1) and expression of tumor necrosis factor alpha (Tnf), increase expression of metallothionein (Mt1), and modulate expression of Alzheimer's disease-associated risk genes, Trem2 and Cd33. CuL5 also improved the phagocytic function of microglia in vitro. In 5xFAD model AD mice, treatment with CuL5 led to an improved performance in a spatial working memory test, while, interestingly, increased accumulation of amyloid plaques in treated mice. These findings demonstrate that CuL5 can induce anti-neuroinflammatory effects in vitro and provide selective benefit in vivo. The outcomes provide further support for the development of copper-based compounds to modulate neuroinflammation in brain diseases.


Assuntos
Doença de Alzheimer , Tiossemicarbazonas , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Fatores Quimiotáticos/metabolismo , Complexos de Coordenação , Cobre/metabolismo , Modelos Animais de Doenças , Glicoproteínas de Membrana/metabolismo , Metalotioneína/metabolismo , Camundongos , Microglia/metabolismo , Receptores Imunológicos/metabolismo , Tiossemicarbazonas/metabolismo , Tiossemicarbazonas/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
5.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445419

RESUMO

Dysregulation of brain iron metabolism is one of the pathological features of aging and Alzheimer's disease (AD), a neurodegenerative disease characterized by progressive memory loss and cognitive impairment. While physical inactivity is one of the risk factors for AD and regular exercise improves cognitive function and reduces pathology associated with AD, the underlying mechanisms remain unclear. The purpose of the study is to explore the effect of regular physical exercise on modulation of iron homeostasis in the brain and periphery of the 5xFAD mouse model of AD. By using inductively coupled plasma mass spectrometry and a variety of biochemical techniques, we measured total iron content and level of proteins essential in iron homeostasis in the brain and skeletal muscles of sedentary and exercised mice. Long-term voluntary running induced redistribution of iron resulted in altered iron metabolism and trafficking in the brain and increased iron content in skeletal muscle. Exercise reduced levels of cortical hepcidin, a key regulator of iron homeostasis, coupled with interleukin-6 (IL-6) decrease in cortex and plasma. We propose that regular exercise induces a reduction of hepcidin in the brain, possibly via the IL-6/STAT3/JAK1 pathway. These findings indicate that regular exercise modulates iron homeostasis in both wild-type and AD mice.


Assuntos
Doença de Alzheimer/reabilitação , Encéfalo/metabolismo , Ferro/metabolismo , Músculo Esquelético/metabolismo , Doença de Alzheimer/metabolismo , Animais , Modelos Animais de Doenças , Exercício Físico , Regulação da Expressão Gênica , Hepcidinas/metabolismo , Homeostase , Humanos , Interleucina-6/metabolismo , Masculino , Espectrometria de Massas , Camundongos , Camundongos Transgênicos , Comportamento Sedentário
6.
Molecules ; 26(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209305

RESUMO

Kinetics and thermodynamics of the template synthesis and of the acidic decomposition of the methylboron-capped iron(II) tris-1,2-dioximates-the clathrochelate derivatives of six (nioxime)- and eight (octoxime)-membered alicyclic ligand synthons-were compared. In the case of a macrobicyclic iron(II) tris-nioximate, the plausible pathway of its formation contains a rate-determining stage and includes a reversible formation of an almost trigonal-antiprismatic (TAP) protonated tris-complex, followed by its monodeprotonation and addition of CH3B(OH)2. Thus, the formed TAP intermediate undergoes a multistep rate-determining stage of double cyclization with the elimination of two water molecules accompanied by a structural rearrangement, thus giving an almost trigonal-prismatic (TP) iron(II) semiclathrochelate. It easily undergoes a cross-linking with CH3B(OH)2, resulting in the elimination of H+ ion and in the formation of a macrobicyclic structure. In contrast, the analogous scheme for its macrobicyclic tris-octoximate analog was found to contain up to three initial stages affecting the overall synthesis reaction rate. The rates of acidic decomposition of the above clathrochelates were found to be also affected by the nature of their ribbed substituents. Therefore, the single crystal XRD experiments were performed in order to explain these results. The difference in the kinetic schemes of a formation of the boron-capped iron(II) tris-nioximates and tris-octoximates is explained by necessity of the substantial changes in a geometry of the latter ligand synthon, caused by its coordination to the iron(II) ion, due to both the higher distortion of the FeN6-coordination polyhedra, and the intramolecular sterical clashes in the molecules of the macrobicyclic iron(II) tris-octoximates.

7.
J Neuroinflammation ; 17(1): 271, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32933545

RESUMO

BACKGROUND: Increased physical exercise improves cognitive function and reduces pathology associated with Alzheimer's disease (AD). However, the mechanisms underlying the beneficial effects of exercise in AD on the level of specific brain cell types remain poorly investigated. The involvement of astrocytes in AD pathology is widely described, but their exact role in exercise-mediated neuroprotection warrant further investigation. Here, we investigated the effect of long-term voluntary physical exercise on the modulation of the astrocyte state. METHODS: Male 5xFAD mice and their wild-type littermates had free access to a running wheel from 1.5 to 7 months of age. A battery of behavioral tests was used to assess the effects of voluntary exercise on cognition and learning. Neuronal loss, impairment in neurogenesis, beta-amyloid (Aß) deposition, and inflammation were evaluated using a variety of histological and biochemical measurements. Sophisticated morphological analyses were performed to delineate the specific involvement of astrocytes in exercise-induced neuroprotection in the 5xFAD mice. RESULTS: Long-term voluntary physical exercise reversed cognitive impairment in 7-month-old 5xFAD mice without affecting neurogenesis, neuronal loss, Aß plaque deposition, or microglia activation. Exercise increased glial fibrillary acid protein (GFAP) immunoreactivity and the number of GFAP-positive astrocytes in 5xFAD hippocampi. GFAP-positive astrocytes in hippocampi of the exercised 5xFAD mice displayed increases in the numbers of primary branches and in the soma area. In general, astrocytes distant from Aß plaques were smaller in size and possessed simplified processes in comparison to plaque-associated GFAP-positive astrocytes. Morphological alterations of GFAP-positive astrocytes occurred concomitantly with increased astrocytic brain-derived neurotrophic factor (BDNF) and restoration of postsynaptic protein PSD-95. CONCLUSIONS: Voluntary physical exercise modulates the reactive astrocyte state, which could be linked via astrocytic BDNF and PSD-95 to improved cognition in 5xFAD hippocampi. The molecular pathways involved in this modulation could potentially be targeted for benefit against AD.


Assuntos
Doença de Alzheimer/terapia , Astrócitos/fisiologia , Aprendizagem em Labirinto/fisiologia , Condicionamento Físico Animal/métodos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Teste de Esforço/métodos , Teste de Esforço/tendências , Hipocampo/metabolismo , Hipocampo/patologia , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Condicionamento Físico Animal/tendências , Resultado do Tratamento
8.
Glia ; 67(1): 146-159, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30453390

RESUMO

Astrocytes are the gatekeepers of neuronal energy supply. In neurodegenerative diseases, bioenergetics demand increases and becomes reliant upon fatty acid oxidation as a source of energy. Defective fatty acid oxidation and mitochondrial dysfunctions correlate with hippocampal neurodegeneration and memory deficits in Alzheimer's disease (AD), but it is unclear whether energy metabolism can be targeted to prevent or treat the disease. Here we show for the first time an impairment in fatty acid oxidation in human astrocytes derived from induced pluripotent stem cells of AD patients. The impairment was corrected by treatment with a synthetic peroxisome proliferator activated receptor delta (PPARß/δ) agonist GW0742 which acts to regulate an array of genes governing cellular metabolism. GW0742 enhanced the expression of CPT1a, the gene encoding for a rate-limiting enzyme of fatty acid oxidation. Similarly, treatment of a mouse model of AD, the APP/PS1-mice, with GW0742 increased the expression of Cpt1a and concomitantly reversed memory deficits in a fear conditioning test. Although the GW0742-treated mice did not show altered astrocytic glial fibrillary acidic protein-immunoreactivity or reduction in amyloid beta (Aß) load, GW0742 treatment increased hippocampal neurogenesis and enhanced neuronal differentiation of neuronal progenitor cells. Furthermore, GW0742 prevented Aß-induced impairment of long-term potentiation in hippocampal slices. Collectively, these data suggest that PPARß/δ-agonism alleviates AD related deficits through increasing fatty acid oxidation in astrocytes and improves cognition in a transgenic mouse model of AD.


Assuntos
Astrócitos/metabolismo , Ácidos Graxos/metabolismo , PPAR delta/metabolismo , PPAR beta/metabolismo , Presenilina-1/metabolismo , Tiazóis/farmacologia , Adulto , Animais , Astrócitos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , Éxons/efeitos dos fármacos , Éxons/fisiologia , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Oxirredução/efeitos dos fármacos , PPAR delta/agonistas , PPAR beta/agonistas , Distribuição Aleatória
9.
Environ Toxicol Pharmacol ; 104: 104316, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37981204

RESUMO

This study evaluated how exposure to the ubiquitous air pollution component, ultrafine particles (UFPs), alters the olfactory bulb (OB) transcriptome. The study utilised a whole-body inhalation chamber to simulate real-life conditions and focused on UFPs due to their high translocation and deposition ability in OBs as well as their prevalence in ambient air. Female C57BL/6J mice were exposed to clean air or to freshly generated combustion derived UFPs for two weeks, after which OBs were dissected and mRNA transcripts were investigated using RNA sequencing analysis. For the first time, transcriptomics was applied to determine changes in mRNA expression levels occurring after subacute exposure to UFPs in the OBs. We found forty-five newly described mRNAs to be involved in air pollution-induced responses, including genes involved in odorant binding, synaptic regulation, and myelination signalling pathway, providing new gene candidates for future research. This study provides new insights for the environmental science and neuroscience fields and nominates future research directions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Camundongos , Animais , Feminino , Bulbo Olfatório/química , Bulbo Olfatório/metabolismo , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Transcriptoma , Camundongos Endogâmicos C57BL , Poluição do Ar/análise , Material Particulado/toxicidade , Material Particulado/análise , Perfilação da Expressão Gênica , Biomarcadores/metabolismo , RNA Mensageiro/metabolismo , Tamanho da Partícula
10.
Sci Total Environ ; 905: 167038, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37709087

RESUMO

Ultrafine particles (UFP) with a diameter of ≤0.1 µm, are contributors to ambient air pollution and derived mainly from traffic emissions, yet their health effects remain poorly characterized. The olfactory mucosa (OM) is located at the rooftop of the nasal cavity and directly exposed to both the environment and the brain. Mounting evidence suggests that pollutant particles affect the brain through the olfactory tract, however, the exact cellular mechanisms of how the OM responds to air pollutants remain poorly known. Here we show that the responses of primary human OM cells are altered upon exposure to UFPs and that different fuels and engines elicit different adverse effects. We used UFPs collected from exhausts of a heavy-duty-engine run with renewable diesel (A0) and fossil diesel (A20), and from a modern diesel vehicle run with renewable diesel (Euro6) and compared their health effects on the OM cells by assessing cellular processes on the functional and transcriptomic levels. Quantification revealed all samples as UFPs with the majority of particles being ≤0.1 µm by an aerodynamic diameter. Exposure to A0 and A20 induced substantial alterations in processes associated with inflammatory response, xenobiotic metabolism, olfactory signaling, and epithelial integrity. Euro6 caused only negligible changes, demonstrating the efficacy of aftertreatment devices. Furthermore, when compared to A20, A0 elicited less pronounced effects on OM cells, suggesting renewable diesel induces less adverse effects in OM cells. Prior studies and these results suggest that PAHs may disturb the inflammatory process and xenobiotic metabolism in the OM and that UFPs might mediate harmful effects on the brain through the olfactory route. This study provides important information on the adverse effects of UFPs in a human-based in vitro model, therefore providing new insight to form the basis for mitigation and preventive actions against the possible toxicological impairments caused by UFP exposure.


Assuntos
Poluentes Atmosféricos , Xenobióticos , Humanos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Material Particulado/toxicidade , Material Particulado/análise , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Mucosa Olfatória/química
11.
Neurotoxicology ; 89: 55-66, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34999154

RESUMO

Epidemiological studies reveal that air pollution exposure may exacerbate neurodegeneration. Ultrafine particles (UFPs) are pollutants that remain unregulated in ambient air by environmental agencies. Due to their small size (<100 nm), UFPs have the most potential to cross the bodily barriers and thus impact the brain. However, little information exists about how UFPs affect brain function. Alzheimer's disease (AD) is the most common form of dementia, which has been linked to air pollutant exposure, yet limited information is available on the mechanistic connection between them. This study aims to decipher the effects of UFPs in the brain and periphery using the 5xFAD mouse model of AD. In our study design, AD mice and their wildtype littermates were subjected to 2-weeks inhalation exposure of UFPs in a whole-body chamber. That subacute exposure did not affect the amyloid-beta accumulation. However, when multiple cytokines were analyzed, we found increased levels of proinflammatory cytokines in the brain and periphery, with a predominant alteration of interferon-gamma in response to UFP exposure in both genotypes. Following exposure, mitochondrial superoxide dismutase was significantly upregulated only in the 5xFAD hippocampi, depicting oxidative stress induction in the exposed AD mouse group. These data demonstrate that short-term exposure to inhaled UFPs induces inflammation without affecting amyloid-beta load. This study provides a better understanding of adverse effects caused by short-term UFP exposure in the brain and periphery, also in the context of AD.


Assuntos
Poluentes Atmosféricos , Material Particulado , Poluentes Atmosféricos/toxicidade , Peptídeos beta-Amiloides , Animais , Inflamação/induzido quimicamente , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise , Camundongos , Tamanho da Partícula , Material Particulado/toxicidade
12.
Oxid Med Cell Longev ; 2018: 2894247, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29765493

RESUMO

The current study examined the effect of aging and long-term wheel-running on the expression of heat shock protein (HSP), redox regulation, and endoplasmic reticulum (ER) stress markers in tibialis anterior (T.A.) and soleus muscle of mice. Male mice were divided into young (Y, 3-month-old), old-sedentary (OS, 24-month-old), and old-exercise (OE, 24-month-old) groups. The OE group started voluntary wheel-running at 3 months and continued until 24 months of age. Aging was associated with a higher thioredoxin-interacting protein (TxNiP) level, lower thioredoxin-1 (TRX-1) to TxNiP ratio-a determinant of redox regulation and increased CHOP, an indicator of ER stress-related apoptosis signaling in both muscles. Notably, GRP78, a key indicator of ER stress, was selectively elevated in T.A. Long-term exercise decreased TxNiP in T.A. and soleus muscles and increased the TRX-1/TxNiP ratio in soleus muscle of aged mice. Inducible HSP70 and constituent HSC70 were upregulated, whereas CHOP was reduced after exercise in soleus muscle. Thus, our data demonstrated that aging induced oxidative stress and activated ER stress-related apoptosis signaling in skeletal muscle, whereas long-term wheel-running improved redox regulation, ER stress adaptation and attenuated ER stress-related apoptosis signaling. These findings suggest that life-long exercise can protect against age-related cellular stress.


Assuntos
Proteínas de Choque Térmico/metabolismo , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/métodos , Idoso , Animais , Chaperona BiP do Retículo Endoplasmático , Humanos , Masculino , Camundongos
13.
ACS Omega ; 2(10): 6852-6862, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457271

RESUMO

The study tackles one of the challenges in developing platinum-free molecular electrocatalysts for hydrogen evolution, which is to seek for new possibilities to ensure large turnover numbers by stabilizing electrocatalytic intermediates. These species are often much more reactive than the initial electrocatalysts, and if not properly stabilized by a suitable choice of functionalizing substituents, they have a limited long-time activity. Here, we describe new iron and cobalt(II) cage complexes (clathrochelates) that in contrast to many previously reported complexes of this type do not act as electrocatalysts for hydrogen evolution. We argue that the most probable reason for this behavior is an excessive stabilization of the metal(I) species by perfluoroaryl ribbed groups, resulting in an unprecedented long-term stability of the metal(I) complexes even in acidic solutions.

14.
Dalton Trans ; 44(8): 3773-84, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25607531

RESUMO

Pentafluorophenylboron-capped iron and cobalt(II) hexachloroclathrochelate precursors were obtained by the one-pot template condensation of dichloroglyoxime with pentafluorophenylboronic acid on iron and cobalt(II) ions under vigorous reaction conditions in trifluoroacetic acid media. These reactive precursors easily undergo nucleophilic substitution with (per)fluoroarylthiolate anions, giving (per)fluoroarylsulfide macrobicyclic complexes with encapsulated iron and cobalt(II) ions; nucleophilic substitution of the cobalt(II) hexachloroclathrochelate precursor with a pentafluorophenylsulfide anion gave the target hexasulfide monoclathrochelate and the mixed-valence Co(III)Co(II)Co(III) bis-clathrochelate as a side product. The complexes obtained were characterized using elemental analysis, MALDI-TOF mass spectrometry, IR, UV-Vis, (57)Fe Mössbauer (for the X-rayed iron complexes), (1)H, (11)B, (13)C and (19)F NMR spectroscopies and by X-ray diffraction; their redox and electrocatalytic behaviors were studied using cyclic voltammetry and gas chromatography. As can be seen from the single-crystal X-ray diffraction data, the second superhydrophobic shell of such caged metal ions is formed by fluorine atoms of both the apical and ribbed (per)fluoroaryl peripheral groups. The main bond distances and chelate N=C-C=N angles in their molecules are similar, but rotational elongation (contraction) along the molecular C3-pseudoaxes, accompanied by changes in the geometry of the corresponding MN6-coordination polyhedra from a trigonal prism to a trigonal antiprism, allowed encapsulating Fe(2+), Co(2+) and Co(3+) ions. The nature of an encapsulated metal ion and its oxidation state affect the M-N bond lengths, and, for cobalt(ii) clathrochelate with an electronic configuration d(7) the Jahn-Teller structural effect is observed as an alternation of the Co-N distances. Pentafluorophenylboron-capped hexachloroclathrochelate precursors, giving stable catalytically active metal(I)-containing intermediates due to the electron-withdrawing effect of their six ribbed chlorine substituents, were found to show moderate electrocatalytic activity in a 2H(+)/H2 hydrogen-forming reaction. In the case of their ribbed-functionalized sulfide derivatives, the strong electron-withdrawing (per)fluoroaryl groups do not stabilize the reduced electrocatalytically active metal(i)-containing species as their mesomeric effect is absent or substantially decreased by steric hindrances between them.

15.
Chem Commun (Camb) ; 50(6): 645-8, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24292104

RESUMO

Mechanistic studies of H2O2 activation by complexes related to [(BPMEN)Fe(II)(CH3CN)2](2+) with electron-rich pyridines revealed that a new intermediate formed in the presence of acetic acid with a 465 nm visible band can be associated with an unusual g = 2.7 EPR signal. We postulate that this chromophore is an acylperoxoiron(III) intermediate.


Assuntos
Materiais Biomiméticos/química , Complexos de Coordenação/química , Peróxido de Hidrogênio/química , Ferro/química , Acilação , Espectroscopia de Ressonância de Spin Eletrônica , Heme/química , Medições Luminescentes , Modelos Biológicos
16.
Dalton Trans ; 42(37): 13667-78, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23903469

RESUMO

Iron(II) α-oximehydrazonate and α-dioximate bis-clathrochelates with apical hydrocarbon linkers were obtained by template condensation on an iron(II) ion followed by H(+)-catalyzed macrobicyclization of the bis-semiclathrochelate precursor with formaldehyde and triethyl orthoformate, and by transmetallation of the triethylantimony-containing clathrochelate precursor with diboron-containing bifunctional Lewis acids, respectively. The geometry of the para-phenylenediboron-capped iron(II) bis-clathrochelate studied by single-crystal X-ray diffraction is intermediate between a trigonal prism and a trigonal antiprism with a distortion angle of 20.4°; the rigidity of its C6H4 linker results in the presence of the expected three-fold pseudo-rotational B···Fe···B···B···Fe···B axis and a staggered conformation of the cyclohexane-containing chelate moieties. The cyclic voltammograms (CVs) for the oximehydrazonate bis-clathrochelates contain single one-electron (for each metallocentre, and therefore, two electrons per molecule) quasi-reversible reduction waves assigned to the redox-processes of Fe(2+/+), and no interaction is observed between the two encapsulated iron(I)-containing metallocenters; six strong electron-withdrawing ethoxy substituents in the 1,3,5-triazacyclohexane capping fragments substantially affect the potential of this reduction. The corresponding waves for the dioximate complexes are irreversible: due to the structural rigidity of the caging tris-dioximate ligands, their reduced dianionic forms are unstable on the CV time scale. The CV for the hexaethoxy bis-clathrochelate complex contains one two-electron reversible oxidation wave assigned to the metal-centered oxidation of Fe(2+/3+), whereas those for its dioximate analogs are quasi-reversible. The relative lability of the ligand cavity in binuclear oximehydrazonates causes a stabilization of both the oxidized and the reduced forms; the reduced iron(I)-containing species are highly electrocatalytically active in the hydrogen-producing 2H(+)/H2 reaction. Their higher activity as compared with that for dioximate bis-clathrochelates was explained by the higher availability of the catalytically active metallocentres for H(+) ions.


Assuntos
Compostos Ferrosos/química , Compostos Ferrosos/síntese química , Hidrazonas/química , Oximas/química , Catálise , Técnicas Eletroquímicas , Modelos Moleculares , Estrutura Molecular
17.
Biogerontology ; 4(4): 221-5, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14501186

RESUMO

The month of birth was significantly associated with the month of death in 102,265 individuals who died in Kiev during the period 1990-2000. A consistent trend in deaths was revealed, with an excess around the birthday. This excess on the actual anniversary of birth was 44.4% in men (chi2=11.48, P<0.001) and 36.2% in women (chi2=7.64, P<0.01) over the expected value. Significant variations in the mortality rate were obtained, according to the month of the individual annual cycle (IAC). The excess of mortality has been associated with the first and the last months of IAC in different age groups as well as for all major causes of death: circulatory (heart and cerebrovascular) diseases, malignant neoplasms and violent death. Neither the emotional stress nor the behavioral changes associated with the birthday can explain the results obtained. We hypothesize that 'birth stress' might be imprinted in a structure of the biological rhythms of the organism, thus resulting in periodic changes of vulnerability and survivability during the course of the IAC.


Assuntos
Mortalidade , Estações do Ano , Humanos , Ucrânia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA