Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 476(7360): 341-5, 2011 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-21685886

RESUMO

Mitochondria from diverse organisms are capable of transporting large amounts of Ca(2+) via a ruthenium-red-sensitive, membrane-potential-dependent mechanism called the uniporter. Although the uniporter's biophysical properties have been studied extensively, its molecular composition remains elusive. We recently used comparative proteomics to identify MICU1 (also known as CBARA1), an EF-hand-containing protein that serves as a putative regulator of the uniporter. Here, we use whole-genome phylogenetic profiling, genome-wide RNA co-expression analysis and organelle-wide protein coexpression analysis to predict proteins functionally related to MICU1. All three methods converge on a novel predicted transmembrane protein, CCDC109A, that we now call 'mitochondrial calcium uniporter' (MCU). MCU forms oligomers in the mitochondrial inner membrane, physically interacts with MICU1, and resides within a large molecular weight complex. Silencing MCU in cultured cells or in vivo in mouse liver severely abrogates mitochondrial Ca(2+) uptake, whereas mitochondrial respiration and membrane potential remain fully intact. MCU has two predicted transmembrane helices, which are separated by a highly conserved linker facing the intermembrane space. Acidic residues in this linker are required for its full activity. However, an S259A point mutation retains function but confers resistance to Ru360, the most potent inhibitor of the uniporter. Our genomic, physiological, biochemical and pharmacological data firmly establish MCU as an essential component of the mitochondrial Ca(2+) uniporter.


Assuntos
Canais de Cálcio/química , Canais de Cálcio/metabolismo , Genômica , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Canais de Cálcio/genética , Células HEK293 , Células HeLa , Humanos , Transporte de Íons , Camundongos , Mitocôndrias Hepáticas/metabolismo , Membranas Mitocondriais/química , Membranas Mitocondriais/metabolismo , Dados de Sequência Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Filogenia , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
3.
J Biol Chem ; 285(18): 13742-7, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20220140

RESUMO

Rapid advances in genotyping and sequencing technology have dramatically accelerated the discovery of genes underlying human disease. Elucidating the function of such genes and understanding their role in pathogenesis, however, remain challenging. Here, we introduce a genomic strategy to characterize such genes functionally, and we apply it to LRPPRC, a poorly studied gene that is mutated in Leigh syndrome, French-Canadian type (LSFC). We utilize RNA interference to engineer an allelic series of cellular models in which LRPPRC has been stably silenced to different levels of knockdown efficiency. We then combine genome-wide expression profiling with gene set enrichment analysis to identify cellular responses that correlate with the loss of LRPPRC. Using this strategy, we discovered a specific role for LRPPRC in the expression of all mitochondrial DNA-encoded mRNAs, but not the rRNAs, providing mechanistic insights into the enzymatic defects observed in the disease. Our analysis shows that nuclear genes encoding mitochondrial proteins are not collectively affected by the loss of LRPPRC. We do observe altered expression of genes related to hexose metabolism, prostaglandin synthesis, and glycosphingolipid biology that may either play an adaptive role in cell survival or contribute to pathogenesis. The combination of genetic perturbation, genomic profiling, and pathway analysis represents a generic strategy for understanding disease pathogenesis.


Assuntos
DNA Mitocondrial/metabolismo , Regulação da Expressão Gênica , Doença de Leigh/mortalidade , Modelos Biológicos , Mutação , Proteínas de Neoplasias , Linhagem Celular Transformada , DNA Mitocondrial/genética , Perfilação da Expressão Gênica , Inativação Gênica , Estudo de Associação Genômica Ampla , Glicoesfingolipídeos/biossíntese , Glicoesfingolipídeos/genética , Hexoses/biossíntese , Hexoses/genética , Humanos , Doença de Leigh/genética , Doença de Leigh/patologia , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/genética , Prostaglandinas/biossíntese , Prostaglandinas/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
4.
Cell Metab ; 14(3): 428-34, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21907147

RESUMO

The metazoan mitochondrial translation machinery is unusual in having a single tRNA(Met) that fulfills the dual role of the initiator and elongator tRNA(Met). A portion of the Met-tRNA(Met) pool is formylated by mitochondrial methionyl-tRNA formyltransferase (MTFMT) to generate N-formylmethionine-tRNA(Met) (fMet-tRNA(met)), which is used for translation initiation; however, the requirement of formylation for initiation in human mitochondria is still under debate. Using targeted sequencing of the mtDNA and nuclear exons encoding the mitochondrial proteome (MitoExome), we identified compound heterozygous mutations in MTFMT in two unrelated children presenting with Leigh syndrome and combined OXPHOS deficiency. Patient fibroblasts exhibit severe defects in mitochondrial translation that can be rescued by exogenous expression of MTFMT. Furthermore, patient fibroblasts have dramatically reduced fMet-tRNA(Met) levels and an abnormal formylation profile of mitochondrially translated COX1. Our findings demonstrate that MTFMT is critical for efficient human mitochondrial translation and reveal a human disorder of Met-tRNA(Met) formylation.


Assuntos
Ciclo-Oxigenase 1/metabolismo , DNA Mitocondrial/química , Fibroblastos/metabolismo , Doença de Leigh/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Biossíntese de Proteínas , RNA de Transferência de Metionina/metabolismo , Células Cultivadas , Criança , Ciclo-Oxigenase 1/genética , DNA Mitocondrial/genética , Fibroblastos/patologia , Heterozigoto , Humanos , Hidroximetil e Formil Transferases , Immunoblotting , Doença de Leigh/metabolismo , Doença de Leigh/patologia , Lentivirus , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Mutação , Biossíntese de Proteínas/genética , Análise de Sequência de DNA , Transdução Genética , Vírion
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA