Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38912735

RESUMO

The kynurenine pathway of tryptophan degradation generates several metabolites such as kynurenine or kynurenic acid that serve as endogenous ligands of the aryl hydrocarbon receptor (AHR). Due to its distinct biological roles particularly modulating the immune system, the AHR is a current therapeutic target across different inflammation-related diseases. Here, we show an acute exercise-induced increase in AHR ligand availability on a systemic level and a kynurenine pathway activation in peripheral blood mononuclear cells (PBMCs). Concurrently, the AHR is activated in PBMCs following acute exercise. Exercise effects on both, kynurenic acid and AHR activation in PBMCs were greater in response to high-intensity interval exercise (50 min., six three-minute intervals á 90% V̇O2peak, and three-minute intervals at 50% V̇O2peak in between) compared to workload-matched moderate intensity continuous exercise (50 min.). In conclusion, these data indicate a novel mechanistic link how exercise modulates the immune system through the kynurenine pathway-AHR axis, potentially underlying exercise-induced benefits in various chronic diseases.

2.
Int J Sports Med ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834174

RESUMO

While pre-post differences in immune cell mobilization after acute aerobic exercise are well investigated, less is known about when and to what extent immune cells are mobilized during acute aerobic exercise. This experimental trial aimed to investigate the detailed kinetics of circulating immune cells in twelve healthy adults (n=6 females) who completed a 40-min aerobic exercise bout at 60% of the participants' V̇O2peak on a bicycle ergometer. Cellular inflammation markers and sex-dependent differences in circulating immune cells were analyzed. Blood samples were taken immediately before, after warm-up, during exercise after 5 min, 10 min, 15 min, 30 min, 40 min (cessation), and 60 min post exercise. Significant increases in leukocytes (p<0.001), lymphocytes (p<0.001), neutrophils (p=0.003) and platelets (p=0.047) can be observed after five min of exercise. The cellular inflammation markers show significant alterations only post exercise. Significant sex differences were observed for neutrophils (p=0.049) and neutrophil-to-lymphocyte ratio (p=0.007) one hour post exercise. These results indicate that i) leukocytes are already mobilized after 5 min of moderate-to-vigorous aerobic exercise, ii) the magnitude of exercise induced leukocyte mobilization is dependent on exercise duration, iii) integrative cellular inflammation markers are only altered after exercise cessation, and iv) the observed effects might be sex-dependent.

3.
Immun Ageing ; 20(1): 19, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37161540

RESUMO

BACKGROUND: Age-related accumulation of highly differentiated CD8+ effector memory re-expressing CD45RA (EMRA) T-cells and disruption of the kynurenine (KYN) pathway are associated with chronic inflammation and the development of insulin resistance. In this study the aim was to investigate the effects of 12-week combined strength and endurance exercise on CD8+ T-cell differentiation and KYN pathway metabolites. Ninety-six elderly subjects (f/m, aged 50-70) were randomized to a control (CON) or exercise (EX) group. The EX group completed combined strength and endurance training twice weekly for one hour each time at an intensity of 60% of the one-repetition maximum for strength exercises and a perceived exertion of 15/20 for endurance exercises. The EX group was also randomly subdivided into two groups with or without a concomitant balanced diet intervention in order to examine additional effects besides exercise alone. Before and after the intervention phase, the proportions of CD8+ T-cell subsets and levels of KYN pathway metabolites in peripheral blood were determined. RESULTS: The CD8+ EMRA T-cell subsets increased in the CON group but remained almost unchanged in the EX group (p = .02). Plasma levels of kynurenic acid (KA) increased in the EX group and decreased in the CON group (p = .03). Concomitant nutritional intervention resulted in lower levels of quinolinic acid (QA) compared with exercise alone (p = .03). Overall, there was a slight increase in the QA/KA ratio in the CON group, whereas it decreased in the EX group (p > .05). CONCLUSIONS: Combined strength and endurance training seems to be a suitable approach to attenuate CD8+ T-cell differentiation in the elderly and to redirect the KYN pathway towards KA. The clinical relevance of these effects needs further investigation.

4.
Am J Physiol Cell Physiol ; 323(3): C879-C884, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35912994

RESUMO

The mobilization and activation of natural killer (NK) cells have been proposed as key mechanisms promoting anti-oncogenic effects of physical exercise. Although mouse models have proven that physical exercise recruits NK cells to tumor tissue and inhibits tumor growth, this preclinical finding has not been transferred to the clinical setting yet. In this first-in-human study, we found that physical exercise mobilizes and redistributes NK cells, especially those with a cytotoxic phenotype, in line with preclinical models. However, physical exercise did not increase NK cell tumor infiltrates. Future studies should carefully distinguish between acute and chronic exercise modalities and should be encouraged to investigate more immune-responsive tumor entities.


Assuntos
Células Matadoras Naturais , Neoplasias da Próstata , Animais , Exercício Físico/fisiologia , Humanos , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Masculino , Camundongos , Neoplasias da Próstata/metabolismo
5.
Acta Physiol (Oxf) ; 237(3): e13921, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36599416

RESUMO

Nicotinamide adenine dinucleotide (NAD+ ) is an evolutionarily highly conserved coenzyme with multi-faceted cell functions, including energy metabolism, molecular signaling processes, epigenetic regulation, and DNA repair. Since the discovery that lower NAD+ levels are a shared characteristic of various diseases and aging per se, several NAD+ -boosting strategies have emerged. Other than pharmacological and nutritional approaches, exercise is thought to restore NAD+ homeostasis through metabolic adaption to chronically recurring states of increased energy demand. In this review we discuss the impact of acute exercise and exercise training on tissue-specific NAD+ metabolism of rodents and humans to highlight the potential value as NAD+ -boosting strategy. By interconnecting results from different investigations, we aim to draw attention to tissue-specific alterations in NAD+ metabolism and the associated implications for whole-body NAD+ homeostasis. Acute exercise led to profound alterations of intracellular NAD+ metabolism in various investigations, with the magnitude and direction of changes being strongly dependent on the applied exercise modality, cell type, and investigated animal model or human population. Exercise training elevated NAD+ levels and NAD+ metabolism enzymes in various tissues. Based on these results, we discuss molecular mechanisms that might connect acute exercise-induced disruptions of NAD+ /NADH homeostasis to chronic exercise adaptions in NAD+ metabolism. Taking this hypothesis-driven approach, we hope to inspire future research on the molecular mechanisms of exercise as NAD+ -modifying lifestyle intervention, thereby elucidating the potential therapeutic value in NAD+ -related pathologies.


Assuntos
Epigênese Genética , NAD , Animais , Humanos , NAD/metabolismo , Envelhecimento/metabolismo , Metabolismo Energético , Homeostase
6.
J Sport Health Sci ; 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37832643

RESUMO

BACKGROUND: B cells represent a crucial component of adaptive immunity that ensures long-term protection from infection by generating pathogen-specific immunoglobulins. Exercise alters B cell counts and immunoglobulin levels, but evidence-based conclusions on potential benefits for adaptive immunity are lacking. This systematic review assessed current literature on the impact of acute exercise and exercise training on B cells, immunoglobulins, and markers of secretory immunity in human biofluids. METHODS: According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, MEDLINE, Web of Science, and Embase were searched on March 8, 2023. Non-randomized controlled trials and crossover trials investigating the impact of acute exercise or exercise training on B cell counts and proportions, immunoglobulin levels, salivary flow rate, or secretory immunoglobulin A secretion rate were included. Quality and reporting of exercise training studies was assessed using the Tool for the Assessment of Study Quality and reporting in Exercise. Study characteristics, outcome measures, and statistically significant changes were summarized tabularly. RESULTS: Of the 67 eligible studies, 22 applied acute exercise and 45 applied exercise training. All included outcomes revealed significant alterations over time in acute exercise and exercise training context, but only a few investigations showed significant differences compared to control conditions. Secretory and plasma immunoglobulin A levels were most consistently increased in response to exercise training. CONCLUSION: B cell-related outcomes are altered by acute exercise and exercise training, but evidence-based conclusions cannot be drawn with high confidence due to the large heterogeneity in populations and exercise modalities. Well-designed trials with large sample sizes are needed to clarify how exercise shapes B cell-related immunity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA