RESUMO
Nuclear hormone receptors (NRs) are ligand-binding transcription factors that are widely targeted therapeutically. Agonist binding triggers NR activation and subsequent degradation by unknown ligand-dependent ubiquitin ligase machinery. NR degradation is critical for therapeutic efficacy in malignancies that are driven by retinoic acid and estrogen receptors. Here, we demonstrate the ubiquitin ligase UBR5 drives degradation of multiple agonist-bound NRs, including the retinoic acid receptor alpha (RARA), retinoid x receptor alpha (RXRA), glucocorticoid, estrogen, liver-X, progesterone, and vitamin D receptors. We present the high-resolution cryo-EMstructure of full-length human UBR5 and a negative stain model representing its interaction with RARA/RXRA. Agonist ligands induce sequential, mutually exclusive recruitment of nuclear coactivators (NCOAs) and UBR5 to chromatin to regulate transcriptional networks. Other pharmacological ligands such as selective estrogen receptor degraders (SERDs) degrade their receptors through differential recruitment of UBR5 or RNF111. We establish the UBR5 transcriptional regulatory hub as a common mediator and regulator of NR-induced transcription.
Assuntos
Cromatina , Fatores de Transcrição , Humanos , Ligantes , Cromatina/genética , Fatores de Transcrição/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Ubiquitinas , Ubiquitina-Proteína Ligases/genéticaRESUMO
The IL-3, IL-5, and GM-CSF family of cytokines play an essential role in the growth, differentiation, and effector functions of multiple hematopoietic cell types. Receptors in this family are composed of cytokine-specific α chains and a common ß chain (CSF2RB), responsible for the majority of downstream signaling. CSF2RB abundance and stability influence the magnitude of the cellular response to cytokine stimulation, but the exact mechanisms of regulation are not well understood. Here, we use genetic screens in multiple cellular contexts and cytokine conditions to identify STUB1, an E3 ubiquitin ligase, and CHIC2 as regulators of CSF2RB ubiquitination and protein stability. We demonstrate that Stub1 and Chic2 form a complex that binds Csf2rb and that genetic inactivation of either Stub1 or Chic2 leads to reduced ubiquitination of Csf2rb. The effects of Stub1 and Chic2 on Csf2rb were greatest at reduced cytokine concentrations, suggesting that Stub1/Chic2-mediated regulation of Csf2rb is a mechanism of reducing cell surface accumulation when cytokine levels are low. Our study uncovers a mechanism of CSF2RB regulation through ubiquitination and lysosomal degradation and describes a role for CHIC2 in the regulation of a cytokine receptor.
Assuntos
Subunidade beta Comum dos Receptores de Citocinas , Ubiquitina-Proteína Ligases , Subunidade beta Comum dos Receptores de Citocinas/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Interleucina-3/genética , Interleucina-3/metabolismo , Interleucina-5/genética , Interleucina-5/metabolismo , Estabilidade Proteica , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , UbiquitinaçãoRESUMO
Casitas B-lineage lymphoma (CBL) encodes an E3 ubiquitin ligase and signaling adaptor that regulates receptor and nonreceptor tyrosine kinases. Recurrent CBL mutations occur in myeloid neoplasms, including 10% to 20% of chronic myelomonocytic leukemia (CMML) cases, and selectively disrupt the protein's E3 ubiquitin ligase activity. CBL mutations have been associated with poor prognosis, but the oncogenic mechanisms and therapeutic implications of CBL mutations remain incompletely understood. We combined functional assays and global mass spectrometry to define the phosphoproteome, CBL interactome, and mechanism of signaling activation in a panel of cell lines expressing an allelic series of CBL mutations. Our analyses revealed that increased LYN activation and interaction with mutant CBL are key drivers of enhanced CBL phosphorylation, phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) recruitment, and downstream phosphatidylinositol 3-kinase (PI3K)/AKT signaling in CBL-mutant cells. Signaling adaptor domains of CBL, including the tyrosine kinase-binding domain, proline-rich region, and C-terminal phosphotyrosine sites, were all required for the oncogenic function of CBL mutants. Genetic ablation or dasatinib-mediated inhibition of LYN reduced CBL phosphorylation, CBL-PIK3R1 interaction, and PI3K/AKT signaling. Furthermore, we demonstrated in vitro and in vivo antiproliferative efficacy of dasatinib in CBL-mutant cell lines and primary CMML. Overall, these mechanistic insights into the molecular function of CBL mutations provide rationale to explore the therapeutic potential of LYN inhibition in CBL-mutant myeloid malignancies.
Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-cbl/genética , Quinases da Família src/metabolismo , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Humanos , Mutação , Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Transdução de SinaisRESUMO
CD8α(+) dendritic cells (DCs) prime cytotoxic T lymphocytes during viral infections and produce interleukin-12 in response to pathogens. Although the loss of CD8α(+) DCs in Batf3(-/-) mice increases their susceptibility to several pathogens, we observed that Batf3(-/-) mice exhibited enhanced resistance to the intracellular bacterium Listeria monocytogenes. In wild-type mice, Listeria organisms, initially located in the splenic marginal zone, migrated to the periarteriolar lymphoid sheath (PALS) where they grew exponentially and induced widespread lymphocyte apoptosis. In Batf3(-/-) mice, however, Listeria organisms remain trapped in the marginal zone, failed to traffic into the PALS, and were rapidly cleared by phagocytes. In addition, Batf3(-/-) mice, which lacked the normal population of hepatic CD103(+) peripheral DCs, also showed protection from liver infection. These results suggest that Batf3-dependent CD8α(+) and CD103(+) DCs provide initial cellular entry points within the reticuloendothelial system by which Listeria establishes productive infection.
Assuntos
Células Dendríticas/metabolismo , Listeria monocytogenes/fisiologia , Listeriose/imunologia , Linfonodos/metabolismo , Baço/metabolismo , Animais , Antígenos CD/biossíntese , Apoptose/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Antígenos CD8/biossíntese , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Células Dendríticas/patologia , Imunidade Inata/genética , Cadeias alfa de Integrinas/biossíntese , Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Linfonodos/imunologia , Linfonodos/microbiologia , Linfonodos/patologia , Linfócitos/patologia , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Fagocitose/genética , Proteínas Repressoras/genética , Baço/imunologia , Baço/microbiologia , Baço/patologia , VirulênciaRESUMO
BACKGROUND: Alloantibodies recognizing human leukocyte antigens (HLA) can cause immune-mediated refractoriness to platelet transfusion. An association between HLA alloimmunization and red blood cell (RBC) alloimmunization has been suggested but remains uncertain. STUDY DESIGN AND METHODS: We tested for HLA alloantibodies in 660 patients with and without RBC alloantibodies. Calculated panel reactive antibody (cPRA) values were determined for HLA alloimmunized patients. Current and historical diagnoses and blood product exposure were catalogued. Variables associated with high-level HLA alloimmunization (cPRA ≥ 90%) were evaluated. RESULTS: The cohort included 366 women and 294 men with median age of 66 years (interquartile range [IQR], 53-76). The number of patients with and without RBC alloantibodies was 447 and 213, respectively. Among patients with and without RBC alloantibodies, 20.6% and 8.5% had a cPRA ≥ 90%, respectively (p < 0.0001). In univariate analyses of men and nulliparous women and previously pregnant women, the median number of RBC alloantibodies was significantly higher in patients with a cPRA ≥ 90% (p < 0.0001). The number of RBC alloantibodies remained an independent predictor of a cPRA ≥ 90% in multivariate analysis (odds ratio [OR] 1.50, 95% confidence interval [CI] 1.22-1.85). Other independent predictors of a cPRA ≥ 90% were parity (OR 1.26, 95% CI 1.08-1.47), age (OR 0.98, 95% CI 0.97-1.00), history of renal disease (OR 1.88, 95% CI 1.02-3.48), and number of non-leukoreduced products transfused (OR 1.02, 95% CI 1.00-1.04). CONCLUSIONS: RBC alloimmunization was significantly associated with HLA alloimmunization with a cPRA ≥ 90%. RBC alloimmunization status combined with specific components of the clinical history may estimate the risk of high-level HLA alloimmunization.
Assuntos
Eritrócitos/imunologia , Antígenos HLA/imunologia , Isoanticorpos/imunologia , Idoso , Tipagem e Reações Cruzadas Sanguíneas , Feminino , Histocompatibilidade , Teste de Histocompatibilidade , Humanos , Imunidade , Isoanticorpos/efeitos adversos , Isoanticorpos/sangue , Masculino , Transfusão de PlaquetasRESUMO
A high-salt diet (HSD) in humans is linked to a number of complications, including hypertension and cardiovascular events. Whether a HSD affects the immune response in transplantation is unknown. Using a murine transplantation model, we investigated the effect of NaCl on the alloimmune response in vitro and in vivo. Incremental NaCl concentrations in vitro augmented T cell proliferation in the settings of both polyclonal and allospecific stimulation. Feeding a HSD to C57BL/6 wild-type recipients of bm12 allografts led to accelerated cardiac allograft rejection, despite similar mean BP and serum sodium levels in HSD and normal salt diet (NSD) groups. The accelerated rejection was associated with a reduction in the proportion of CD4(+)Foxp3(+) regulatory T cells (Tregs) and a significant decrease in Treg proliferation, leading to an increased ratio of antigen-experienced CD4(+) T cells to Tregs in mice recipients of a HSD compared with mice recipients of a NSD. Because serum- and glucocorticoid-regulated kinase-1 (SGK1) has been proposed as a potential target of salt in immune cells, we fed a HSD to CD4(Cre)SGK1(fl/fl) B6-transplanted recipients and observed abrogation of the deleterious effect of a HSD in the absence of SGK1 on CD4(+) cells. In summary, we show that NaCl negatively affects the regulatory balance of T cells in transplantation and precipitates rejection in an SGK1-dependent manner.
Assuntos
Rejeição de Enxerto/induzido quimicamente , Proteínas Imediatamente Precoces/efeitos dos fármacos , Proteínas Imediatamente Precoces/fisiologia , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/fisiologia , Cloreto de Sódio na Dieta/efeitos adversos , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Fatores de TempoRESUMO
BACKGROUND: Collection of hematopoietic progenitor cells by apheresis (HPC-A) requires separation of cells by density. Previous studies highlighted the challenges of HPC-A collection from patients with abnormal red blood cells (RBCs). TEMPI syndrome is a recently described condition defined by teleangiectasias, elevated erythropoietin and erythrocytosis, monoclonal gammopathy, perinephric fluid collections, and intrapulmonary shunting. Patients with TEMPI syndrome have responded to therapies used to treat plasma cell dyscrasias and may benefit from autologous HPC transplantation. We report HPC-A collection from a patient with TEMPI syndrome that was complicated by severe iron deficiency. STUDY DESIGN AND METHODS: The patient received granulocyte-colony-stimulating factor (G-CSF) and plerixafor for HPC mobilization and underwent 3 days of HPC-A collection. RESULTS: The patient presented for collection with a microcytic erythrocytosis. Over 3 days, approximately 50 L of whole blood was processed, and 2 × 10(8) CD34+ cells were collected (2.8 × 10(6) CD34+ cells/kg). The mean collection efficiency (CE), percentage of mononuclear cells, hematocrit (Hct), and RBC count were 18%, 90%, 14%, and 9 × 10(11) , respectively. Altering collection variables to avoid RBC contamination reduced CE. Ficoll preparations of the products after freeze-thaw showed RBC contamination and hemolysis. Postthaw viability exceeded 95%. The products were not RBC reduced or washed. There were no adverse reactions during or after infusion. CONCLUSIONS: HPC-A collection from a patient with TEMPI syndrome was complicated by microcytic erythrocytosis, leading to RBC contamination and hemolysis in the product. Adequate HPCs were collected and the patient tolerated infusion without RBC depletion or washing. Our report highlights difficulties of HPC-A collection from iron-deficient patients.
Assuntos
Citaferese , Eritrócitos Anormais , Eritropoetina/sangue , Mobilização de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Nefropatias/sangue , Paraproteinemias/sangue , Policitemia/sangue , Benzilaminas , Ciclamos , Fator Estimulador de Colônias de Granulócitos/administração & dosagem , Compostos Heterocíclicos/administração & dosagem , Humanos , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , SíndromeRESUMO
Splicing modulation is a promising treatment strategy pursued to date only in splicing factor-mutant cancers; however, its therapeutic potential is poorly understood outside of this context. Like splicing factors, genes encoding components of the cohesin complex are frequently mutated in cancer, including myelodysplastic syndromes (MDS) and secondary acute myeloid leukemia (AML), where they are associated with poor outcomes. Here, we showed that cohesin mutations are biomarkers of sensitivity to drugs targeting the splicing factor 3B subunit 1 (SF3B1) H3B-8800 and E-7107. We identified drug-induced alterations in splicing, and corresponding reduced gene expression, of a number of DNA repair genes, including BRCA1 and BRCA2, as the mechanism underlying this sensitivity in cell line models, primary patient samples and patient-derived xenograft (PDX) models of AML. We found that DNA damage repair genes are particularly sensitive to exon skipping induced by SF3B1 modulators due to their long length and large number of exons per transcript. Furthermore, we demonstrated that treatment of cohesin-mutant cells with SF3B1 modulators not only resulted in impaired DNA damage response and accumulation of DNA damage, but it sensitized cells to subsequent killing by poly(ADP-ribose) polymerase (PARP) inhibitors and chemotherapy and led to improved overall survival of PDX models of cohesin-mutant AML in vivo. Our findings expand the potential therapeutic benefits of SF3B1 splicing modulators to include cohesin-mutant MDS and AML.
Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Coesinas , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Splicing de RNA , Fatores de Processamento de RNA/genética , Mutação/genética , Fatores de Transcrição/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Reparo do DNA/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Dano ao DNARESUMO
Age-related diseases are frequently linked to pathological immune dysfunction, including excessive inflammation, autoreactivity and immunodeficiency. Recent analyses of human genetic data have revealed that somatic mutations and mosaic chromosomal alterations in blood cells - a condition known as clonal haematopoiesis (CH) - are associated with ageing and pathological immune dysfunction. Indeed, large-scale epidemiological studies and experimental mouse models have demonstrated that CH can promote cardiovascular disease, chronic obstructive pulmonary disease, chronic liver disease, osteoporosis and gout. The genes most frequently mutated in CH, the epigenetic regulators TET2 and DNMT3A, implicate increased chemokine expression and inflammasome hyperactivation in myeloid cells as a possible mechanistic connection between CH and age-related diseases. In addition, TET2 and DNMT3A mutations in lymphoid cells have been shown to drive methylation-dependent alterations in differentiation and function. Here we review the observational and mechanistic studies describing the connection between CH and pathological immune dysfunction, the effects of CH-associated genetic alterations on the function of myeloid and lymphoid cells, and the clinical and therapeutic implications of CH as a target for immunomodulation.
Assuntos
DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3A , Humanos , Camundongos , Animais , DNA (Citosina-5-)-Metiltransferases/genética , Hematopoiese Clonal , Hematopoese/genética , Mutação , Sistema ImunitárioRESUMO
Somatic UBA1 mutations in hematopoietic cells are a hallmark of Vacuoles, E1 enzyme, X-linked, Autoinflammatory, Somatic (VEXAS) syndrome, which is a late-onset inflammatory disease associated with bone marrow failure and high mortality. The majority of UBA1 mutations in VEXAS syndrome comprise hemizygous mutations affecting methionine-41 (M41), leading to the expression of UBA1M41T, UBA1M41V, or UBA1M41L and globally reduced protein polyubiquitination. Here, we used CRISPR-Cas9 to engineer isogenic 32D mouse myeloid cell lines expressing hemizygous Uba1WT or Uba1M41L from the endogenous locus. Consistent with prior analyses of patients with VEXAS syndrome samples, hemizygous Uba1M41L expression was associated with loss of the UBA1b protein isoform, gain of the UBA1c protein isoform, reduced polyubiquitination, abnormal cytoplasmic vacuoles, and increased production of interleukin-1ß and inflammatory chemokines. Vacuoles in Uba1M41L cells contained a variety of endolysosomal membranes, including small vesicles, multivesicular bodies, and multilamellar lysosomes. Uba1M41L cells were more sensitive to the UBA1 inhibitor TAK243. TAK243 treatment promoted apoptosis in Uba1M41L cells and led to preferential loss of Uba1M41L cells in competition assays with Uba1WT cells. Knock-in of a TAK243-binding mutation, Uba1A580S, conferred TAK243 resistance. In addition, overexpression of catalytically active UBA1b in Uba1M41L cells restored polyubiquitination and increased TAK243 resistance. Altogether, these data indicate that loss of UBA1b underlies a key biochemical phenotype associated with VEXAS syndrome and renders cells with reduced UBA1 activity vulnerable to targeted UBA1 inhibition. Our Uba1M41L knock-in cell line is a useful model of VEXAS syndrome that will aid in the study of disease pathogenesis and the development of effective therapies.
Assuntos
Células Mieloides , Células Progenitoras Mieloides , Animais , Camundongos , Humanos , Lisossomos , Isoformas de ProteínasRESUMO
Immature dendritic cells (DCs) specialize in antigen capture and maintain a highly dynamic pool of intracellular major histocompatibility complex class II (MHCII) that continuously recycles from peptide loading compartments to the plasma membrane and back again. This process facilitates sampling of environmental antigens for presentation to T helper cells. Here, we show that a signaling pathway mediated by the DC immunoreceptor tyrosine-based activation motif (ITAM)-containing adaptors (DAP12 and FcRγ) and Vav family guanine nucleotide exchange factors controls the half-life of surface peptide-MHCII (pMHCII) complexes and is critical for CD4 T-cell triggering in vitro. Strikingly, mice with disrupted DC ITAMs show defective T helper cell priming in vivo and are protected from experimental autoimmune encephalitis. Mechanistically, we show that deficiency in ITAM signaling results in increased pMHCII internalization, impaired recycling, and an accumulation of ubiquitinated MHCII species that are prematurely degraded in lysosomes. We propose a novel mechanism for control of T helper cell priming.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Proteínas Proto-Oncogênicas c-vav/imunologia , Receptores de IgG/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Motivos de Aminoácidos , Animais , Apresentação de Antígeno , Encefalopatias/induzido quimicamente , Encefalopatias/imunologia , Linfócitos T CD4-Positivos/imunologia , Encefalite , Doença de Hashimoto/induzido quimicamente , Doença de Hashimoto/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Lisossomos/metabolismo , Camundongos , Transdução de Sinais , Tirosina/imunologia , UbiquitinaçãoRESUMO
Peptides derived from exogenous proteins are presented by both MHC class I and II. Despite extensive study, the features of the endocytic pathway that mediate cross-presentation of exogenous antigens on MHC class I are not entirely understood and difficult to generalize to all proteins. Here, we used dendritic cells and macrophages to examine MHC class I and II presentation of hen egg-white lysozyme (HEL) in different forms, soluble and liposome encapsulated. Soluble HEL or HEL targeted to a late endosomal compartment only allowed for MHC class II presentation, in a process that was blocked by chloroquine and a cathepsin S (CatS) inhibitor; brefeldin A (BFA) also blocked presentation, indicating a requirement for nascent MHC class II. In contrast, liposome-encapsulated HEL targeted to early endosomes entered the MHC class I and II presentation pathways. Cross-presentation of HEL in early endosomal liposomes had several unique features: it was markedly increased by BFA and by blockade of the proteasome or CatS activity, it occurred independently of the transporter associated with antigen processing but required an MHC class I surface-stabilizing peptide, and it was inhibited by chloroquine. Remarkably, chloroquine facilitated MHC class I cross-presentation of soluble HEL and HEL in late endosomal liposomes. Altogether, MHC class I and II presentation of HEL occurred through pathways having distinct molecular and proteolytic requirements. Moreover, MHC class I sampled antigenic peptides from various points along the endocytic route.
Assuntos
Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe I/genética , Animais , Brefeldina A/farmacologia , Galinhas , Cloroquina/farmacologia , Células Dendríticas/imunologia , Endocitose/imunologia , Antígenos de Histocompatibilidade Classe I/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe II/efeitos dos fármacos , Humanos , Lipossomos/química , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos NOD/imunologia , Muramidase/química , Muramidase/genéticaRESUMO
Bleeding in patients with acute myeloid leukemia (AML) receiving intensive induction chemotherapy is multifactorial and contributes to early death. We sought to define the incidence and risk factors of grade 4 bleeding to support strategies for risk mitigation. Bleeding events were retrospectively assessed between day-14 and day +60 of induction treatment according to the World Health Organization (WHO) bleeding assessment scale, which includes grade 4 bleeding as fatal, life-threatening, retinal with visual impairment, or involving the central nervous system. Predictors were considered pretreatment or prior to grade 4 bleeding. Using multivariable competing-risk regression analysis with grade 4 bleeding as the primary outcome, we identified risk factors in the development cohort (n = 341), which were tested in an independent cohort (n = 143). Grade 4 bleeding occurred in 5.9% and 9.8% of patients in the development and validation cohort, respectively. Risk factors that were independently associated with grade 4 bleeding included baseline platelet count ≤40 × 109/L compared with >40 × 109/L, and baseline international normalized ratio of prothrombin time (PT-INR) >1.5 or 1.3 > 1.5 compared with ≤1.3. These variables were allocated points, which allowed for stratification of patients with low- and high-risk for grade 4 bleeding. Cumulative incidence of grade 4 bleeding at day+60 was significantly higher among patients with high- vs low-risk (development: 31 ± 7% vs 2 ± 1%; P < .001; validation: 25 ± 9% vs 7 ± 2%; P = .008). In both cohorts, high bleeding risk was associated with disseminated intravascular coagulation (DIC) and proliferative disease. We developed and validated a simple risk model for grade 4 bleeding, which enables the development of rational risk mitigation strategies to improve early mortality of intensive induction treatment.
Assuntos
Coagulação Intravascular Disseminada , Leucemia Mieloide Aguda , Hemorragia/epidemiologia , Hemorragia/etiologia , Humanos , Quimioterapia de Indução/efeitos adversos , Leucemia Mieloide Aguda/complicações , Leucemia Mieloide Aguda/tratamento farmacológico , Estudos RetrospectivosRESUMO
Refractoriness to platelet transfusion is a common clinical problem encountered by the transfusion medicine specialist. It is well recognized that most causes of refractoriness to platelet transfusion are not a consequence of alloimmunization to human leukocyte, platelet-specific, or ABO antigens, but are a consequence of platelet sequestration and consumption. This review summarizes the clinical factors that result in platelet refractoriness and highlights recent data describing novel biological mechanisms that contribute to this clinical problem.
Assuntos
Plaquetas/imunologia , Transfusão de Plaquetas , Baço/imunologia , Trombocitopenia/imunologia , Trombocitopenia/terapia , Humanos , Contagem de Plaquetas , Baço/microbiologia , Esplenomegalia/imunologia , Trombocitopenia/fisiopatologia , Falha de TratamentoRESUMO
Chronic graft-versus-host disease (cGVHD) affects >50% of hematopoietic stem cell transplant patients. Extracorporeal photopheresis (ECP), an immunomodulatory therapy, provides clinical benefit in steroid-refractory (SR) cGVHD, possibly via regulatory T (Treg) and natural killer (NK) cell expansion. We demonstrated that low-dose interleukin-2 (IL2) led to clinical improvement in SR-cGVHD and stimulated preferential Treg and NK-cell expansion with minimal effect on conventional T (Tcon) cells. We evaluated the effect of ECP (weeks 1-16) plus IL2 (1 × 106 IU/m2, weeks 9-16) in 25 adult patients with SR-cGVHD in a prospective phase 2 trial. Objective responses occurred in 29% and 62% of evaluable patients at weeks 8 (ECP alone) and 16 (ECP plus IL2), respectively. Eight weeks of ECP alone was associated with a marked decline in CD4+ Tcon (P = .03) and CD8+ T cells (P = .0002), with minimal change in Treg cells, Treg:Tcon cell ratio, or NK cells. Adding IL2 induced an increase in Treg cells (P < .05 at weeks 9-16 vs week 8), Treg:Tcon cell ratio (P < .0001 at weeks 9-16 vs week 8), and NK cells (P < .05 at weeks 9-16 vs week 8). Patients responding to ECP alone had significantly fewer CD4+ Tcon and CD8+ T cells at baseline compared with patients who responded after IL2 addition and patients who did not respond; neither Treg nor NK cells were associated with response to ECP alone. Altogether, ECP plus IL2 is safe and effective in patients with SR-cGVHD. ECP and IL2 have distinct immunologic effects, suggesting different therapeutic mechanisms of action. This trial was registered at www.clinicaltrials.gov as #NCT02340676.
Assuntos
Terapia Combinada/métodos , Doença Enxerto-Hospedeiro/terapia , Interleucina-2/uso terapêutico , Fotoferese/métodos , Adulto , Idoso , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Doença Crônica , Feminino , Humanos , Interleucina-2/imunologia , Células Matadoras Naturais/citologia , Masculino , Pessoa de Meia-Idade , Linfócitos T Reguladores/citologia , Fatores de Tempo , Resultado do TratamentoRESUMO
Hematologic malignancies are driven by combinations of genetic lesions that have been difficult to model in human cells. We used CRISPR/Cas9 genome engineering of primary adult and umbilical cord blood CD34+ human hematopoietic stem and progenitor cells (HSPCs), the cells of origin for myeloid pre-malignant and malignant diseases, followed by transplantation into immunodeficient mice to generate genetic models of clonal hematopoiesis and neoplasia. Human hematopoietic cells bearing mutations in combinations of genes, including cohesin complex genes, observed in myeloid malignancies generated immunophenotypically defined neoplastic clones capable of long-term, multi-lineage reconstitution and serial transplantation. Employing these models to investigate therapeutic efficacy, we found that TET2 and cohesin-mutated hematopoietic cells were sensitive to azacitidine treatment. These findings demonstrate the potential for generating genetically defined models of human myeloid diseases, and they are suitable for examining the biological consequences of somatic mutations and the testing of therapeutic agents.
Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes , Genoma Humano , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Modelos Biológicos , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Animais , Antígenos CD34/metabolismo , Linhagem da Célula , Células Clonais , Genótipo , Transplante de Células-Tronco Hematopoéticas , Humanos , Leucemia/patologia , Camundongos , Mutação/genética , Zigoto/metabolismoRESUMO
Synaptic vesicle protein 2 (SV2), a ubiquitous synaptic vesicle protein, is known to participate in the regulation of Ca(2+)-mediated synaptic transmission, although its precise function has not been established. Three SV2 isoforms (SV2A, SV2B, SV2C) have been identified recently, each of which has a unique distribution in brain, suggesting synapse-specific functions. To determine if SV2A, -B, and -C are differentially distributed among synapses in the retina and the sequence of their development, we examined their distribution and expression patterns immunocytochemically in adult and developing mouse retina. The three SV2 isoforms were differentially distributed in the synapses of the two plexiform layers in the adult retina. SV2A was present in cone, but not rod, terminals in the outer plexiform layer (OPL) and in many synaptic terminals in the inner plexiform layer (IPL). SV2B was present only in the ribbon synapse-containing terminals of rod and cone photoreceptors and bipolar cells. SV2C was present in starburst amacrine cells, other conventional synapses in the IPL of unknown origin, and in presumptive interplexiform cell terminals in the INL and OPL. Each SV2 isoform was expressed in its distinct presynaptic terminals early and throughout postnatal development. In addition, SV2A was transiently expressed by developing horizontal cells. The unique distribution of each isoform suggests potentially distinct functions at different types of synapses, with SV2B having ribbon synapse-specific functions, and SV2C being important for the functions of starburst amacrine cells. Rod and cone terminals contain different complements of SV2 isoforms, indicating that ribbon synapses are not all identical. The early expression of SV2 isoforms prior to initiation of synapse formation suggests that they may have important synapse-specific roles during synaptogenesis.