Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Geophys Res Lett ; 49(17): e2022GL099776, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36245894

RESUMO

Observations by several cameras on the Perseverance rover showed a 22° scattering halo around the Sun over several hours during northern midsummer (solar longitude 142°). Such a halo has not previously been seen beyond Earth. The halo occurred during the aphelion cloud belt season and the cloudiest time yet observed from the Perseverance site. The halo required crystalline water-ice cloud particles in the form of hexagonal columns large enough for refraction to be significant, at least 11 µm in diameter and length. From a possible 40-50 km altitude, and over the 3.3 hr duration of the halo, particles could have fallen 3-12 km, causing downward transport of water and dust. Halo-forming clouds are likely rare due to the high supersaturation of water that is required but may be more common in northern subtropical regions during northern midsummer.

2.
Geophys Res Lett ; 49(17): e2022GL100126, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36245893

RESUMO

Rovers and landers on Mars have experienced local, regional, and planetary-scale dust storms. However, in situ documentation of active lifting within storms has remained elusive. Over 5-11 January 2022 (LS 153°-156°), a dust storm passed over the Perseverance rover site. Peak visible optical depth was ∼2, and visibility across the crater was briefly reduced. Pressure amplitudes and temperatures responded to the storm. Winds up to 20 m s-1 rotated around the site before the wind sensor was damaged. The rover imaged 21 dust-lifting events-gusts and dust devils-in one 25-min period, and at least three events mobilized sediment near the rover. Rover tracks and drill cuttings were extensively modified, and debris was moved onto the rover deck. Migration of small ripples was seen, but there was no large-scale change in undisturbed areas. This work presents an overview of observations and initial results from the study of the storm.

3.
Earth Space Sci ; 10(1): e2022EA002694, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37034273

RESUMO

The NASA Psyche mission will explore the structure, composition, and other properties of asteroid (16) Psyche to test hypotheses about its formation. Variations in radar reflectivity, density, thermal inertia, and visible to near-infrared (VNIR) reflectance spectra of Psyche suggest a highly metallic composition with mafic silicate minerals (e.g., pyroxene) heterogeneously distributed on the surface in low abundance (<10 vol.%). The Psyche spacecraft's Multispectral Imager is designed to map ≥80% of the surface at high spatial resolution (≤20 m/pixel) through a panchromatic filter and provide compositional information for about ≥80% of the surface using seven narrowband filters at VNIR wavelengths (∼400-1,100 nm) and at spatial scales of ≤500 m/pixel. We analyzed 359 reflectance spectra from samples consistent with current uncertainties in Psyche's composition and compared them to published reflectance spectra of the asteroid using a chi-square test for goodness of fit. The best matches for Psyche include iron meteorite powder, powders from the sulfide minerals troilite and pentlandite, and powder from the CH/CBb chondrite Isheyevo. Comparison of absorption features support the interpretation that Psyche's surface is a metal-silicate mixture, although the exact abundance and chemistry of the silicate component remains poorly constrained. We convolve our spectra to the Imager's spectral throughput to demonstrate preliminary strategies for mapping the surface composition of the asteroid using filter ratios and reconstructed band parameters. Our results provide predictions of the kinds of surface compositional information that the Psyche mission could reveal on the solar system's largest M-type asteroid.

4.
Nature ; 443(7107): E1-2; discussion E2, 2006 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-16957684

RESUMO

The Mars Exploration Rover Opportunity discovered sulphate-rich sedimentary rocks at Meridiani Planum on Mars, which are interpreted by McCollom and Hynek as altered volcanic rocks. However, their conclusions are derived from an incorrect representation of our depositional model, which is upheld by more recent Rover data. We contend that all the available data still support an aeolian and aqueous sedimentary origin for Meridiani bedrock.

5.
J Geophys Res Planets ; 127(12): e2022JE007605, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37033154

RESUMO

Martian atmospheric dust is a major driver of weather, with feedback between atmospheric dust distribution, circulation changes from radiative heating and cooling driven by this dust, and winds that mobilize surface dust and distribute it in the atmosphere. Wind-driven mobilization of surface dust is a poorly understood process due to significant uncertainty about minimum wind stress and whether the saltation of sand particles is required. This study utilizes video of six Ingenuity helicopter flights to measure dust lifting during helicopter ascents, traverses, and descents. Dust mobilization persisted on takeoff until the helicopter exceeded 3 m altitude, with dust advecting at 4-6 m/s. During landing, dust mobilization initiated at 2.3-3.6 m altitude. Extensive dust mobilization occurred during traverses at 5.1-5.7 m altitude. Dust mobilization threshold friction velocity of rotor-induced winds during landing is modeled at 0.4-0.6 m/s (factor of two uncertainty in this estimate), with higher winds required when the helicopter was over undisturbed terrain. Modeling dust mobilization from >5 m cruising altitude indicates mobilization by 0.3 m/s winds, suggesting nonsaltation mechanisms such as mobilization and destruction of dust aggregates. No dependence on background winds was seen for the initiation of dust lifting but one case of takeoff in 7 m/s winds created a track of darkened terrain downwind of the helicopter, which may have been a saltation cluster. When the helicopter was cruising at 5-6 m altitude, recirculation was seen in the dust clouds.

6.
Science ; 377(6614): eabo2196, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36007009

RESUMO

The Perseverance rover landed in Jezero crater, Mars, to investigate ancient lake and river deposits. We report observations of the crater floor, below the crater's sedimentary delta, finding that the floor consists of igneous rocks altered by water. The lowest exposed unit, informally named Séítah, is a coarsely crystalline olivine-rich rock, which accumulated at the base of a magma body. Magnesium-iron carbonates along grain boundaries indicate reactions with carbon dioxide-rich water under water-poor conditions. Overlying Séítah is a unit informally named Máaz, which we interpret as lava flows or the chemical complement to Séítah in a layered igneous body. Voids in these rocks contain sulfates and perchlorates, likely introduced by later near-surface brine evaporation. Core samples of these rocks have been stored aboard Perseverance for potential return to Earth.

7.
Nature ; 436(7047): 55-7, 2005 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-16001060

RESUMO

The small martian satellites Phobos and Deimos orbit in synchronous rotation with inclinations of only 0.01 degrees and 0.92 degrees , respectively, relative to the planet's equatorial plane. Thus, an observer at near-equatorial latitudes on Mars could occasionally observe solar eclipses by these satellites (see ref. 1, for example). Because the apparent angular diameter of the satellites is much smaller than that of the Sun, however, such events are more appropriately referred to as transits. Transit data can be used for correcting and refining the orbital ephemerides of the moons. For example, Phobos is known to exhibit a secular acceleration that is caused by tidal dissipation within Mars. Long-term, accurate measurements are needed to refine the magnitude and origin of this dissipation within the martian interior as well as to refine the predicted orbital evolution of both satellites. Here we present observations of six transits of Phobos and Deimos across the solar disk from cameras on Mars aboard the Mars Exploration Rovers Spirit and Opportunity. These are the first direct imaging observations of satellites transiting the Sun from the surface of another planet.

8.
Nature ; 436(7047): 58-61, 2005 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-16001061

RESUMO

The martian surface is a natural laboratory for testing our understanding of the physics of aeolian (wind-related) processes in an environment different from that of Earth. Martian surface markings and atmospheric opacity are time-variable, indicating that fine particles at the surface are mobilized regularly by wind. Regolith (unconsolidated surface material) at the Mars Exploration Rover Opportunity's landing site has been affected greatly by wind, which has created and reoriented bedforms, sorted grains, and eroded bedrock. Aeolian features here preserve a unique record of changing wind direction and wind strength. Here we present an in situ examination of a martian bright wind streak, which provides evidence consistent with a previously proposed formational model for such features. We also show that a widely used criterion for distinguishing between aeolian saltation- and suspension-dominated grain behaviour is different on Mars, and that estimated wind friction speeds between 2 and 3 m s(-1), most recently from the northwest, are associated with recent global dust storms, providing ground truth for climate model predictions.

9.
Nature ; 436(7047): 44-8, 2005 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-16001058

RESUMO

Comprehensive analyses of remote sensing data during the three-year effort to select the Mars Exploration Rover landing sites at Gusev crater and at Meridiani Planum correctly predicted the atmospheric density profile during entry and descent and the safe and trafficable surfaces explored by the two rovers. The Gusev crater site was correctly predicted to be a low-relief surface that was less rocky than the Viking landing sites but comparably dusty. A dark, low-albedo, flat plain composed of basaltic sand and haematite with very few rocks was expected and found at Meridiani Planum. These results argue that future efforts to select safe landing sites based on existing and acquired remote sensing data will be successful. In contrast, geological interpretations of the sites based on remote sensing data were less certain and less successful, which emphasizes the inherent ambiguities in understanding surface geology from remotely sensed data and the uncertainty in predicting exactly what materials will be available for study at a landing site.

10.
Space Sci Rev ; 217(1): 24, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33612866

RESUMO

Mastcam-Z is a multispectral, stereoscopic imaging investigation on the Mars 2020 mission's Perseverance rover. Mastcam-Z consists of a pair of focusable, 4:1 zoomable cameras that provide broadband red/green/blue and narrowband 400-1000 nm color imaging with fields of view from 25.6° × 19.2° (26 mm focal length at 283 µrad/pixel) to 6.2° × 4.6° (110 mm focal length at 67.4 µrad/pixel). The cameras can resolve (≥ 5 pixels) ∼0.7 mm features at 2 m and ∼3.3 cm features at 100 m distance. Mastcam-Z shares significant heritage with the Mastcam instruments on the Mars Science Laboratory Curiosity rover. Each Mastcam-Z camera consists of zoom, focus, and filter wheel mechanisms and a 1648 × 1214 pixel charge-coupled device detector and electronics. The two Mastcam-Z cameras are mounted with a 24.4 cm stereo baseline and 2.3° total toe-in on a camera plate ∼2 m above the surface on the rover's Remote Sensing Mast, which provides azimuth and elevation actuation. A separate digital electronics assembly inside the rover provides power, data processing and storage, and the interface to the rover computer. Primary and secondary Mastcam-Z calibration targets mounted on the rover top deck enable tactical reflectance calibration. Mastcam-Z multispectral, stereo, and panoramic images will be used to provide detailed morphology, topography, and geologic context along the rover's traverse; constrain mineralogic, photometric, and physical properties of surface materials; monitor and characterize atmospheric and astronomical phenomena; and document the rover's sample extraction and caching locations. Mastcam-Z images will also provide key engineering information to support sample selection and other rover driving and tool/instrument operations decisions.

11.
Science ; 374(6568): 711-717, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34618548

RESUMO

Observations from orbital spacecraft have shown that Jezero crater on Mars contains a prominent fan-shaped body of sedimentary rock deposited at its western margin. The Perseverance rover landed in Jezero crater in February 2021. We analyze images taken by the rover in the 3 months after landing. The fan has outcrop faces, which were invisible from orbit, that record the hydrological evolution of Jezero crater. We interpret the presence of inclined strata in these outcrops as evidence of deltas that advanced into a lake. In contrast, the uppermost fan strata are composed of boulder conglomerates, which imply deposition by episodic high-energy floods. This sedimentary succession indicates a transition from sustained hydrologic activity in a persistent lake environment to highly energetic short-duration fluvial flows.

12.
Space Sci Rev ; 217(2): 29, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33678912

RESUMO

The NASA Perseverance rover Mast Camera Zoom (Mastcam-Z) system is a pair of zoomable, focusable, multi-spectral, and color charge-coupled device (CCD) cameras mounted on top of a 1.7 m Remote Sensing Mast, along with associated electronics and two calibration targets. The cameras contain identical optical assemblies that can range in focal length from 26 mm ( 25.5 ∘ × 19.1 ∘ FOV ) to 110 mm ( 6.2 ∘ × 4.2 ∘ FOV ) and will acquire data at pixel scales of 148-540 µm at a range of 2 m and 7.4-27 cm at 1 km. The cameras are mounted on the rover's mast with a stereo baseline of 24.3 ± 0.1  cm and a toe-in angle of 1.17 ± 0.03 ∘ (per camera). Each camera uses a Kodak KAI-2020 CCD with 1600 × 1200 active pixels and an 8 position filter wheel that contains an IR-cutoff filter for color imaging through the detectors' Bayer-pattern filters, a neutral density (ND) solar filter for imaging the sun, and 6 narrow-band geology filters (16 total filters). An associated Digital Electronics Assembly provides command data interfaces to the rover, 11-to-8 bit companding, and JPEG compression capabilities. Herein, we describe pre-flight calibration of the Mastcam-Z instrument and characterize its radiometric and geometric behavior. Between April 26 t h and May 9 t h , 2019, ∼45,000 images were acquired during stand-alone calibration at Malin Space Science Systems (MSSS) in San Diego, CA. Additional data were acquired during Assembly Test and Launch Operations (ATLO) at the Jet Propulsion Laboratory and Kennedy Space Center. Results of the radiometric calibration validate a 5% absolute radiometric accuracy when using camera state parameters investigated during testing. When observing using camera state parameters not interrogated during calibration (e.g., non-canonical zoom positions), we conservatively estimate the absolute uncertainty to be < 10 % . Image quality, measured via the amplitude of the Modulation Transfer Function (MTF) at Nyquist sampling (0.35 line pairs per pixel), shows MTF Nyquist = 0.26 - 0.50 across all zoom, focus, and filter positions, exceeding the > 0.2 design requirement. We discuss lessons learned from calibration and suggest tactical strategies that will optimize the quality of science data acquired during operation at Mars. While most results matched expectations, some surprises were discovered, such as a strong wavelength and temperature dependence on the radiometric coefficients and a scene-dependent dynamic component to the zero-exposure bias frames. Calibration results and derived accuracies were validated using a Geoboard target consisting of well-characterized geologic samples. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11214-021-00795-x.

13.
J Geophys Res Planets ; 125(11): e2019JE006290, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33282613

RESUMO

During 2018 and 2019, the Mars Science Laboratory Curiosity rover investigated the chemistry, morphology, and stratigraphy of Vera Rubin ridge (VRR). Using orbital data from the Compact Reconnaissance Imaging Spectrometer for Mars, scientists attributed the strong 860 nm signal associated with VRR to the presence of red crystalline hematite. However, Mastcam multispectral data and CheMin X-ray diffraction (XRD) measurements show that the depth of the 860 nm absorption is negatively correlated with the abundance of red crystalline hematite, suggesting that other mineralogical or physical parameters are also controlling the 860 nm absorption. Here, we examine Mastcam and ChemCam passive reflectance spectra from VRR and other locations to link the depth, position, and presence or absence of iron-related mineralogic absorption features to the XRD-derived rock mineralogy. Correlating CheMin mineralogy to spectral parameters showed that the ~860 nm absorption has a strong positive correlation with the abundance of ferric phyllosilicates. New laboratory reflectance measurements of powdered mineral mixtures can reproduce trends found in Gale crater. We hypothesize that variations in the 860 nm absorption feature in Mastcam and ChemCam observations of VRR materials are a result of three factors: (1) variations in ferric phyllosilicate abundance due to its ~800-1,000 nm absorption; (2) variations in clinopyroxene abundance because of its band maximum at ~860 nm; and (3) the presence of red crystalline hematite because of its absorption centered at 860 nm. We also show that relatively small changes in Ca-sulfate abundance is one potential cause of the erosional resistance and geomorphic expression of VRR.

14.
J Geophys Res Planets ; 125(9): e2019JE006294, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33042722

RESUMO

Visible/short-wave infrared spectral data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) show absorptions attributed to hematite at Vera Rubin ridge (VRR), a topographic feature on northwest Mt. Sharp. The goals of this study are to determine why absorptions caused by ferric iron are strongly visible from orbit at VRR and to improve interpretation of CRISM data throughout lower Mt. Sharp. These goals are achieved by analyzing coordinated CRISM and in situ spectral data along the Curiosity Mars rover's traverse. VRR bedrock within areas that have the deepest ferric absorptions in CRISM data also has the deepest ferric absorptions measured in situ. This suggests strong ferric absorptions are visible from orbit at VRR because of the unique spectral properties of VRR bedrock. Dust and mixing with basaltic sand additionally inhibit the ability to measure ferric absorptions in bedrock stratigraphically below VRR from orbit. There are two implications of these findings: (1) Ferric absorptions in CRISM data initially dismissed as noise could be real, and ferric phases are more widespread in lower Mt. Sharp than previously reported. (2) Patches with the deepest ferric absorptions in CRISM data are, like VRR, reflective of deeper absorptions in the bedrock. One model to explain this spectral variability is late-stage diagenetic fluids that changed the grain size of ferric phases, deepening absorptions. Curiosity's experience highlights the strengths of using CRISM data for spectral absorptions and associated mineral detections and the caveats in using these data for geologic interpretations and strategic path planning tools.

15.
J Geophys Res Planets ; 125(3): e2019JE006296, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32714727

RESUMO

Some years ago, the consensus was that asteroid (16) Psyche was almost entirely metal. New data on density, radar properties, and spectral signatures indicate that the asteroid is something perhaps even more enigmatic: a mixed metal and silicate world. Here we combine observations of Psyche with data from meteorites and models for planetesimal formation to produce the best current hypotheses for Psyche's properties and provenance. Psyche's bulk density appears to be between 3,400 and 4,100 kg m-3. Psyche is thus predicted to have between ~30 and ~60 vol% metal, with the remainder likely low-iron silicate rock and not more than ~20% porosity. Though their density is similar, mesosiderites are an unlikely analog to bulk Psyche because mesosiderites have far more iron-rich silicates than Psyche appears to have. CB chondrites match both Psyche's density and spectral properties, as can some pallasites, although typical pallasitic olivine contains too much iron to be consistent with the reflectance spectra. Final answers, as well as resolution of contradictions in the data set of Psyche physical properties, for example, the thermal inertia measurements, may not be resolved until the NASA Psyche mission arrives in orbit at the asteroid. Despite the range of compositions and formation processes for Psyche allowed by the current data, the science payload of the Psyche mission (magnetometers, multispectral imagers, neutron spectrometer, and a gamma-ray spectrometer) will produce data sets that distinguish among the models.

16.
Science ; 252(5010): 1293-6, 1991 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-17842954

RESUMO

Near-infrared spectra of a bright and a dark thermal emission feature on the night side of Venus have been obtained from 2.2 to 2.5 micrometers (microm) at a spectral resolution of 1200 to 1500. Both bright and dark features show numerous weak absorption bands produced by CO(2), CO, water vapor, and other gases. The bright feature (hot spot) emits more radiation than the dark feature (cold spot) throughout this spectral region, but the largest contrasts occur between 2.21 and 2.32 microm, where H(2)SO(4) clouds and a weak CO(2) band provide the only known sources of extinction. The contrast decreases by 55 to 65 percent at wavelengths longer than 2.34 microm, where CO, clouds, and water vapor also absorb and scatter upwelling radiation. This contrast reduction may provide direct spectroscopic evidence for horizontal variations in the water vapor concentrations in the Venus atmosphere at levels below the cloud tops.

17.
Science ; 278(5344): 1758-65, 1997 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-9388170

RESUMO

Images of the martian surface returned by the Imager for Mars Pathfinder (IMP) show a complex surface of ridges and troughs covered by rocks that have been transported and modified by fluvial, aeolian, and impact processes. Analysis of the spectral signatures in the scene (at 440- to 1000-nanometer wavelength) reveal three types of rock and four classes of soil. Upward-looking IMP images of the predawn sky show thin, bluish clouds that probably represent water ice forming on local atmospheric haze (opacity approximately 0.5). Haze particles are about 1 micrometer in radius and the water vapor column abundance is about 10 precipitable micrometers.


Assuntos
Meio Ambiente Extraterreno , Marte , Água , Atmosfera , Gelo , Minerais , Vento
18.
J Clin Pathol ; 19(5): 510-2, 1966 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-5919368

RESUMO

A method is described for the estimation of serum protein-bound iodine using alkaline incineration and an automated technique for the estimation of iodine in the ash. Pretreatment of the serum with an anion exchange resin avoids the need for precipitation and washing of the protein. The method is accurate, reproducible, and simple to perform.


Assuntos
Proteínas Sanguíneas/análise , Iodo/sangue , Autoanálise , Resinas de Troca Iônica
19.
Am J Trop Med Hyg ; 28(5): 876-80, 1979 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-484770

RESUMO

Mammals become hypersensitive to ticks that feed upon them. That hypersensitivity was thought responsible for an observation that a large number of Francisella tularensis-infected Dermacentor variabilis failed to infect a rabbit previously exposed to ticks of that species. In a series of tests of that hypothesis, rabbits sensitized to ticks were often significantly more resistant than control animals to tick-borne tularemia. The conditions that determine the klendusity are thought to be variable and complex but the phenomenon must be of importance in the epidemiology of some arthropod-borne agents.


Assuntos
Imunidade Inata , Infestações por Carrapato/imunologia , Tularemia/imunologia , Animais , Vetores de Doenças , Francisella tularensis , Coelhos , Tularemia/parasitologia , Tularemia/transmissão
20.
Science ; 274(5295): 2121-2; author reply 2122-3, 1996 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-8984666
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA