Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 9(7): e18125, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37539237

RESUMO

The autonomic nervous system (ANS) is profoundly affected by high intensity exercise. However, evidence is less clear on ANS recovery and function following prolonged bouts of high intensity exercise, especially in non-endurance athletes. Therefore, this study aimed to investigate the relationships between duration and intensity of acute exercise training sessions and ANS recovery and function in Division I football athletes. Fifty, male football athletes were included in this study. Subjects participated in 135 days of exercise training sessions throughout the 25-week season and wore armband monitors (Warfighter Monitor, Tiger Tech Solutions) equipped with electrocardiography capabilities. Intensity was measured via heart rate (HR) during an 'active state', defined as HR ≥ 85 bpm. Further, data-driven intensity thresholds were used and included HR < 140 bpm, HR < 150 bpm, HR < 160 bpm, HR ≥ 140 bpm, HR ≥ 150 bpm and HR ≥ 160 bpm. Baseline HR and HR recovery were measured and represented ANS recovery and function 24h post-exercise. Linear regression models assessed the relationships between time spent at the identified intensity thresholds and ANS recovery and function 24h post-exercise. Statistical significance set at α < 0.05. Athletes participated in 128 training sessions, totaling 2735 data points analyzed. Subjects were predominantly non-Hispanic black (66.0%), aged 21.2 (±1.5) years and average body mass index of 29.2 (4.7) kg⋅(m2)-1. For baseline HR, statistically significant associations between duration and next-day ANS recovery were observed at HR < 140 bpm (ß = -0.08 ± 0.02, R2 = 0.31, p < 0.001), HR above 150 and 160 bpm intensity thresholds (ß = 0.25 ± 0.02, R2 = 0.69, p < 0.0000 and ß = 0.59 ± 0.06, R2 = 0.71, p < 0.0000). Similar associations were observed for HR recovery: HR < 140 bpm (ß = 0.15 ± 0.03, R2 = 0.43, p < 0.0000) and HR above 150 and 160 bpm (ß = -0.33 ± 0.03, R2 = 0.73, p < 0.0000 and ß = -0.80 ± 0.06, R2 = 0.71, p < 0.0000). The strengths of these associations increased with increasing intensity, HR ≥ 150 and 160 bpm (baseline HR: ß range = 0.25 vs 0.59, R2: 0.69 vs 0.71 and HR recovery: ß range = -0.33 vs -0.80, R2 = 0.73 vs 0.77). Time spent in lower intensity thresholds, elicited weaker associations with ANS recovery and function 24h post-exercise, with statistical significance observed only at HR < 140 bpm (ß = -0.08 ± 0.02, R2 = 0.31, p < 0.001). The findings of this study showed that ANS recovery and function following prolonged high intensity exercise remains impaired for more than 24h. Strength and conditioning coaches should consider shorter bouts of strenuous exercise and extending recovery periods within and between exercise training sessions.

2.
J Funct Morphol Kinesiol ; 8(3)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37754967

RESUMO

Fully restoring autonomic nervous system (ANS) function is paramount for peak sports performance. Training programs failing to provide sufficient recovery, especially during the in-season, may negatively affect performance. This study aimed to evaluate the influence of the physiological workload of collegiate football training on ANS recovery and function during the in-season. Football athletes recruited from a D1 college in the southeastern US were prospectively followed during their 13-week "in-season". Athletes wore armband monitors equipped with ECG and inertial movement capabilities that measured exercise cardiac load (ECL; total heartbeats) and maximum running speed during and baseline heart rate (HR), HR variability (HRV) 24 h post-training. These metrics represented physiological load (ECL = HR·Duration), ANS function, and recovery, respectively. Linear regression models evaluated the associations between ECL, baseline HR, HRV, and maximum running speed. Athletes (n = 30) were 20.2 ± 1.5 years, mostly non-Hispanic Black (80.0%). Negative associations were observed between acute and cumulative exposures of ECLs and running speed (ß = -0.11 ± 0.00, p < 0.0000 and ß = -0.15 ± 0.04, p < 0.0000, respectively). Similarly, negative associations were found between baseline HR and running speed (ß = -0.45 ± 0.12, 95% CI: -0.70, -0.19; p = 0.001). HRV metrics were positively associated with running speed: (SDNN: ß = 0.32 ± 0.09, p < 0.03 and rMSSD: ß = 0.35 ± 0.11, p < 0.02). Our study demonstrated that exposure to high ECLs, both acutely and cumulatively, may negatively influence maximum running speed, which may manifest in a deteriorating ANS. Further research should continue identifying optimal training: recovery ratios during off-, pre-, and in-season phases.

3.
J Funct Morphol Kinesiol ; 8(4)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37873902

RESUMO

Current metrics like baseline heart rate (HR) and HR recovery fail in predicting overtraining (OT), a syndrome manifesting from a deteriorating autonomic nervous system (ANS). Preventing OT requires tracking the influence of internal physiological loads induced by exercise training programs on the ANS. Therefore, this study evaluated the predictability of a novel, exercise cardiac load metric on the deterioration of the ANS. Twenty male American football players, with an average age of 21.3 years and body mass indices ranging from 23.7 to 39.2 kg/m2 were included in this study. Subjects participated in 40 strength- and power-focused exercise sessions over 8 weeks and wore armband monitors (Warfighter Monitor, Tiger Tech Solutions) equipped with electrocardiography capabilities. Exercise cardiac load was the product of average training HR and duration. Baseline HR, HR variability (HRV), average HR, and peak HR were also measured. HR recovery was measured on the following day. HRV indices assessed included the standard deviation of NN intervals (SDNN) and root mean square of successive RR interval differences (rMSSD) Linear regression models assessed the relationships between each cardiac metric and HR recovery, with statistical significance set at α < 0.05. Subjects were predominantly non-Hispanic black (70%) and aged 21.3 (±1.4) years. Adjusted models showed that exercise cardiac load elicited the strongest negative association with HR recovery for previous day (ß = -0.18 ± 0.03; p < 0.0000), one-week (ß = -0.20 ± 0.03; p < 0.0000) and two-week (ß = -0.26 ± 0.03; p < 0.0000) training periods compared to average HR (ßetas: -0.09 to -0.02; p < 0.0000) and peak HR (ßetas: -0.13 to -0.23; p < 0.0000). Statistically significant relationships were also found for baseline HR (p < 0.0000), SDNN (p < 0.0000) and rMSSD (p < 0.0000). Exercise cardiac load appears to best predict ANS deterioration across one- to two-week training periods, showing a capability for tracking an athlete's physiological tolerance and ANS response. Importantly, this information may increase the effectiveness of exercise training programs, enhance performance, and prevent OT.

4.
Front Sports Act Living ; 5: 1267631, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090041

RESUMO

Background: Evidence shows relaxation techniques reactivate the parasympathetic nervous system (PNS) following physiological stressors such as exercise. As such, these techniques may be useful following exercise training of high intensity sports, like collegiate football. Purpose: To evaluate the impact of mindfulness and rest activities on PNS reactivation following training sessions, in a sample of Division-I collegiate, male football athletes. Methods: This study employed a cross-sectional, pre-post experimental design among 38 football athletes. Following three training sessions, each separated by one week, athletes were exposed to three groups: mindfulness, rest, and no-intervention. Athletes in the mindfulness group laid supine in a darkened room, while performing 15 min of guided breathing and body scans. The rest group remained seated in a lighted room, performing 15 min of restful activities (e.g., talking). The no-intervention group was instructed to perform usual post-training activities (e.g., showering). Heart rate (HR), respiration rate (RR) and two HR variability (HRV) indices were measured via an armband monitor (Warfighter Monitor, Tiger Tech Solutions, Inc, Miami, FL) equipped with electrocardiographic and photoplethysmography capabilities. HRV indices included standard deviation of the N-N intervals (SDNN) and root mean square of successive RR interval differences (rMSSD). Within and between-group differences were determined via analysis of variance (ANOVA) and corrected for multiple comparisons familywise error. Results: Statistically significant reductions in HR and RR were observed across all groups: -81.6, -66.4, -40.9 bpm and -31.7, -26.9, and -19.0 breaths⋅min-1, respectively. The mindfulness and rest groups exhibited a larger within-group reduction in HR and RR compared to the no-intervention group, p < 0.0000. Additionally, the mindfulness group showed a larger reduction in HR and RR compared to the rest group, p < 0.05. Post-intervention HR and RRs were significantly lower in the mindfulness group relative to the no-intervention group (77.0 vs. 120.1 bpm, respectively). Similar results were observed for RR (15.0 vs. 23.6 breaths⋅min-1, respectively) and HRV indices (SDNN: 46.9 vs. 33.1 ms and rMSSD: 17.9 vs. 13.8 ms, respectively) Athletes in the rest group showed significantly lower post-intervention HR (-30.2 bpm, 89.9 vs. 120.1 bpm, respectively), RR (-4.3 breaths⋅min-1, 19.3 vs. 23.6 breaths⋅min-1, respectively) and significantly higher HRV (SDNN: 42.9 vs. 33.1 ms and rMSSD: 16.7 vs. 13.8 ms, respectively) compared to their no-intervention counterparts. Conclusions: Our findings suggest that athletes engaging in either 15-minute guided mindfulness or rest activities (e.g., sitting) post training, may facilitate PNS reactivation. Implementing these strategies may accelerate recovery, improving performance. Longitudinal, randomized controlled trials among diverse sports are encouraged.

5.
Sports (Basel) ; 12(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38251282

RESUMO

Exercising with elevated core temperatures may negatively affect autonomic nervous system (ANS) function. Additionally, longer training duration under higher core temperatures may augment these negative effects. This study evaluated the relationship between exercise training duration and 24 h ANS recovery and function at ≥37 °C, ≥38 °C and ≥39 °C core temperature thresholds in a sample of male Division I (D1) collegiate American football athletes. Fifty athletes were followed over their 25-week season. Using armband monitors (Warfighter MonitorTM, Tiger Tech Solutions, Inc., Miami, FL, USA), core temperature (°C) and 24 h post-exercise baseline heart rate (HR), HR recovery and heart rate variability (HRV) were measured. For HRV, two time-domain indices were measured: the root mean square of the standard deviation of the NN interval (rMSSD) and the standard deviation of the NN interval (SDNN). Linear regression models were performed to evaluate the associations between exercise training duration and ANS recovery (baseline HR and HRV) and function (HR recovery) at ≥37 °C, ≥38 °C and ≥39 °C core temperature thresholds. On average, the athletes were 21.3 (± 1.4) years old, weighed 103.0 (±20.2) kg and had a body fat percentage of 15.4% (±7.8%, 3.0% to 36.0%). The duration of training sessions was, on average, 161.1 (±40.6) min and they ranged from 90.1 to 339.6 min. Statistically significant associations between training duration and 24 h ANS recovery and function were observed at both the ≥38.0 °C (baseline HR: ß = 0.10 ± 0.02, R2 = 0.26, p < 0.0000; HR recovery: ß = -0.06 ± 0.02, R2 = 0.21, p = 0.0002; rMSSD: ß = -0.11 ± 0.02, R2 = 0.24, p < 0.0000; and SDNN: ß = -0.16 ± 0.04, R2 = 0.22, p < 0.0000) and ≥39.0 °C thresholds (ß = 0.39 ± 0.05, R2 = 0.62, p < 0.0000; HR recovery: ß = -0.26 ± 0.04, R2 = 0.52, p < 0.0000; rMSSD: ß = -0.37 ± 0.05, R2 = 0.58, p < 0.0000; and SDNN: ß = -0.67 ± 0.09, R2 = 0.59, p < 0.0000). With increasing core temperatures, increases in slope steepness and strengths of the associations were observed, indicating accelerated ANS deterioration. These findings demonstrate that exercise training under elevated core temperatures (≥38 °C) may negatively influence ANS recovery and function 24 h post exercise and progressively worsen.

6.
Cureus ; 13(10): e18445, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34737913

RESUMO

Background Fascial plane blocks are a valuable and important aspect of patient care. However, nerve blocks sometimes present with a technical difficulty that can lead to upsetting the operating room schedule, cause discomfort to the patient, or lead to inadequate block. Potential predictors of this difficulty were evaluated. Methods In a single-blind study, ultrasound image quality was evaluated on a grading metric, and its correlation with several factors that could potentially impact the difficulty of a procedure, including age, BMI, weight, length of surgery, IV fluids, and pre- vs postoperative block, was assessed. Results No correlation was found between any of our anesthetic, patient, or surgical factors, and the resulting image quality. Conclusion The study population was limited compared to our initial goals. We found no correlation between studied variables and image quality, but confounding factors that may affect image quality have not been ruled out.

7.
PLoS One ; 8(9): e74329, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24058546

RESUMO

We present a small integrative model of human cardiovascular physiology. The model is population-based; rather than using best fit parameter values, we used a variant of the Metropolis algorithm to produce distributions for the parameters most associated with model sensitivity. The population is built by sampling from these distributions to create the model coefficients. The resulting models were then subjected to a hemorrhage. The population was separated into those that lost less than 15 mmHg arterial pressure (compensators), and those that lost more (decompensators). The populations were parametrically analyzed to determine baseline conditions correlating with compensation and decompensation. Analysis included single variable correlation, graphical time series analysis, and support vector machine (SVM) classification. Most variables were seen to correlate with propensity for circulatory collapse, but not sufficiently to effect reasonable classification by any single variable. Time series analysis indicated a single significant measure, the stressed blood volume, as predicting collapse in situ, but measurement of this quantity is clinically impossible. SVM uncovered a collection of variables and parameters that, when taken together, provided useful rubrics for classification. Due to the probabilistic origins of the method, multiple classifications were attempted, resulting in an average of 3.5 variables necessary to construct classification. The most common variables used were systemic compliance, baseline baroreceptor signal strength and total peripheral resistance, providing predictive ability exceeding 90%. The methods presented are suitable for use in any deterministic mathematical model.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Modelos Cardiovasculares , Barorreflexo/fisiologia , Pressão Sanguínea , Volume Sanguíneo , Calibragem , Monóxido de Carbono/metabolismo , Insuficiência Cardíaca/fisiopatologia , Hemorragia/fisiopatologia , Homeostase , Humanos , Pressorreceptores/metabolismo , Máquina de Vetores de Suporte , Análise de Sobrevida , Fatores de Tempo , Resistência Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA