Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Ann Hum Biol ; 47(3): 237-243, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32183542

RESUMO

Background: The use of body mass index (BMI) could lead to over/under estimation of fat mass percentage (FM%). An alternative index (inverted BMI, iBMI) has been proposed as a better estimator of FM% in adults, while its practical feasibility in children and adolescents has not been fully investigated.Aim: To examine if iBMI can better estimate FM% than BMI in children/adolescents.Subjects and methods: Height, weight, and triceps and subscapularis skinfolds were measured in 6686 schoolchildren aged 11-14-years-old. BMI and iBMI (squared height/weight) were calculated; FM% was estimated by skinfold thicknesses. The Pearson correlation coefficient and the coefficient of determination were obtained to test the best regression model between the indexes and FM%.Results: FM% was linearly related to both indexes with R2 values that were overall > 0.7. No significant differences among the R2 values were found (p value = .2, ANOVA).Conclusion: BMI persists as a robust index for health surveillance screening in children/adolescents, being very intuitive and ready-to-use. Inverted BMI may be more accurate within a cohort of adults who experience only ponderal modifications, directly implicated in the variation of FM. In conclusion, the BMI remains a quick, handy and intuitive predictor of FM%.


Assuntos
Antropometria/métodos , Distribuição da Gordura Corporal , Índice de Massa Corporal , Dobras Cutâneas , Adolescente , Criança , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Itália , Masculino
2.
Mater Today Bio ; 18: 100526, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36632629

RESUMO

The intertwined adoption of synthetic biology and 3D bioprinting has the potential to improve different application fields by fabricating engineered living materials (ELMs) with unnatural genetically-encoded sense & response capabilities. However, efforts are still needed to streamline the fabrication of sensing ELMs compatible with field use and improving their functional complexity. To investigate these two unmet needs, we adopted a workflow to reproducibly construct bacterial ELMs with synthetic biosensing circuits that provide red pigmentation as visible readout in response to different proof-of-concept chemical inducers. We first fabricated single-input/single-output ELMs and we demonstrated their robust performance in terms of longevity (cell viability and evolutionary stability >15 days, and long-term storage >1 month), sensing in harsh, non-sterile or nutrient-free conditions compatible with field use (soil, water, and clinical samples, including real samples from Pseudomonas aeruginosa infected patients). Then, we fabricated ELMs including multiple spatially-separated biosensor strains to engineer: level-bar materials detecting molecule concentration ranges, multi-input/multi-output devices with multiplexed sensing and information processing capabilities, and materials with cell-cell communication enabling on-demand pattern formation. Overall, we showed successful field use and multiplexed functioning of reproducibly fabricated ELMs, paving the way to a future automation of the prototyping process and boosting applications of such devices as in-situ monitoring tools or easy-to-use sensing kits.

3.
Antibiotics (Basel) ; 12(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37370319

RESUMO

The side effects of antibiotic treatment directly correlate with intestinal dysbiosis. However, a balanced gut microbiota supports the integrity of the enteric nervous system (ENS), which controls gastrointestinal neuromuscular functions. In this study, we investigated the long-term effects of antibiotic-induced microbial dysbiosis on the ENS and the impact of the spontaneous re-establishment of the gut microbiota on gastrointestinal functions. C57BL/6J mice were treated daily for two weeks with antibiotics. After 0-6 weeks of antibiotics wash-out, we determined (a) gut microbiota composition, (b) gastrointestinal motility, (c) integrity of the ENS, (d) neurochemical code, and (e) inflammation. Two weeks of antibiotic treatment significantly altered gut microbial composition; the genera Clostridium, Lachnoclostridium, and Akkermansia did not regain their relative abundance following six weeks of antibiotic discontinuation. Mice treated with antibiotics experienced delayed gastrointestinal transit and altered expression of neuronal markers. The anomalies of the ENS persisted for up to 4 weeks after the antibiotic interruption; the expression of neuronal HuC/D, glial-derived neurotrophic factor (Gdnf), and nerve growth factor (Ngf) mRNA transcripts did not recover. In this study, we strengthened the idea that antibiotic-induced gastrointestinal dysmotility directly correlates with gut dysbiosis as well as structural and functional damage to the ENS.

4.
PeerJ ; 11: e15271, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37101790

RESUMO

Background: Cardiorespiratory fitness (CRF) is a powerful marker of cardiovascular health, especially in youth. Several field tests can provide accurate measurement of CRF, the Cooper Run Test (CRT) is generally preferred by physical education (PE) teachers and trainers. The CRT performance in adolescents has been compared to reference distance values, gender and age but the differences among the anthropometric characteristics of youth has not been evaluated. For these reasons, the aim of this study was to develop reference standards for CRT and evaluate possible correlations between biometric measurements and athletic performance. Methods: This cross-sectional study involved a total of 9,477 children (4,615 girls) aged 11-14 years, freely recruited from North Italian middle schools. Mass, height and CRT performances were assessed in the morning during PE classes as scheduled (mornings-Monday to Friday). The anthropometric measures were collected at least 20 min before the CRT run test. Results: We found a better CRT result in boys (p < 0.001), however a smaller SD in girls suggested a more homogeneous aerobic performance for girls (i.e., 371.12 m vs 282.00 m). In addition, the Shapiro-Wilk test showed a low p-value (p < 0.001) but the effect size (0.031 for boys and 0.022 for girls) was small enough that the correction on this parameter allows a practical assumption of normality for the distributions. A visual homoskedastic distribution in both sexes is evident for both body mass index (BMI), mass and VO2 peak with respect to CRT results. In addition, there were low linear correlation coefficients for both BMI, mass and VO2 peak compared to the CRT results, with a R2 < 0.5 for every covariate. The only visual heteroskedastic distribution was observed in regression between distance in CRT and age at peak high velocity. Conclusions: Our findings suggested that anthropometric characteristics are not powerful markers to predict Cooper Run Test results in a well-mixed, unpolarized and unbiased pool of middle school boys and girls. PE teachers and trainers should prefer endurance tests over the use of indirect formulas to predict performance.


Assuntos
Aptidão Física , Masculino , Criança , Feminino , Adolescente , Humanos , Estudos Transversais , Fatores Sexuais , Antropometria , Índice de Massa Corporal
5.
Sci Rep ; 13(1): 16867, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803040

RESUMO

The outbreak of Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, forced us to face a pandemic with unprecedented social, economic, and public health consequences. Several nations have launched campaigns to immunize millions of people using various vaccines to prevent infections. Meanwhile, therapeutic approaches and discoveries continuously arise; however, identifying infected patients that are going to experience the more severe outcomes of COVID-19 is still a major need, to focus therapeutic efforts, reducing hospitalization and mitigating drug adverse effects. Microbial communities colonizing the respiratory tract exert significant effects on host immune responses, influencing the susceptibility to infectious agents. Through 16S rDNAseq we characterized the upper airways' microbiota of 192 subjects with nasopharyngeal swab positive for SARS-CoV-2. Patients were divided into groups based on the presence of symptoms, pneumonia severity, and need for oxygen therapy or intubation. Indeed, unlike most of the literature, our study focuses on identifying microbial signatures predictive of disease progression rather than on the probability of infection itself, for which a consensus is lacking. Diversity, differential abundance, and network analysis at different taxonomic levels were synergistically adopted, in a robust bioinformatic pipeline, highlighting novel possible taxa correlated with patients' disease progression to intubation.


Assuntos
COVID-19 , Microbiota , Humanos , SARS-CoV-2 , Surtos de Doenças , Progressão da Doença
6.
Front Pharmacol ; 13: 996871, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204236

RESUMO

Increasing antibiotic resistance and the decline in the pharmaceutical industry's investments have amplified the need for novel treatments for multidrug-resistant bacteria. Quorum sensing (QS) inhibitors reduce pathogens' virulence without selective pressure on bacteria and provide an alternative to conventional antibiotic-based therapies. P. aeruginosa uses complex QS signaling to control virulence and biofilm formation. We aimed to identify inhibitors of P. aeruginosa QS acting on acyl-homoserine lactones (AHL)-mediated circuits. Bioluminescence and qRT-PCR assays were employed to screen a library of 81 small phenolic derivatives to reduce AHL-dependent signaling. We identified GM-50 as the most active compound inhibiting the expression of AHL-regulated genes but devoid of cytotoxic activity in human epithelial cells and biocidal effects on bacteria. GM-50 reduces virulence factors such as rhamnolipids, pyocyanin, elastase secretion, and swarming motility in P. aeruginosa PAO1 laboratory strain. By molecular docking, we provide evidence that GM-50 highly interacts with RhlR. GM-50 significantly improved aztreonam-mediated biofilm disruption. Moreover, GM-50 prevents adhesion of PAO1 and inflammatory damage in the human A549 cell line and protects Galleria mellonella from PAO1-mediated killing. GM-50 significantly reduces virulence factors in 20 P. aeruginosa clinical isolates from patients with respiratory tract infections. In conclusion, GM-50 inhibits AHL-signaling, reduces virulence factors, enhances the anti-biofilm activity of aztreonam, and protects G. mellonella larvae from damage induced by P. aeruginosa. Since GM-50 is active on clinical strains, it represents a starting point for identifying and developing new phenolic derivatives acting as QS-inhibitors in P. aeruginosa infections.

7.
Nat Commun ; 12(1): 1692, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727557

RESUMO

CRISPRi-mediated gene regulation allows simultaneous control of many genes. However, highly specific sgRNA-promoter binding is, alone, insufficient to achieve independent transcriptional regulation of multiple targets. Indeed, due to competition for dCas9, the repression ability of one sgRNA changes significantly when another sgRNA becomes expressed. To solve this problem and decouple sgRNA-mediated regulatory paths, we create a dCas9 concentration regulator that implements negative feedback on dCas9 level. This allows any sgRNA to maintain an approximately constant dose-response curve, independent of other sgRNAs. We demonstrate the regulator performance on both single-stage and layered CRISPRi-based genetic circuits, zeroing competition effects of up to 15-fold changes in circuit I/O response encountered without the dCas9 regulator. The dCas9 regulator decouples sgRNA-mediated regulatory paths, enabling concurrent and independent regulation of multiple genes. This allows predictable composition of CRISPRi-based genetic modules, which is essential in the design of larger scale synthetic genetic circuits.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Redes Reguladoras de Genes , Técnicas Genéticas , RNA Guia de Cinetoplastídeos/genética
8.
Front Bioeng Biotechnol ; 9: 743950, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35155399

RESUMO

CRISPR and CRISPRi systems have revolutionized our biological engineering capabilities by enabling the editing and regulation of virtually any gene, via customization of single guide RNA (sgRNA) sequences. CRISPRi modules can work as programmable logic inverters, in which the dCas9-sgRNA complex represses a target transcriptional unit. They have been successfully used in bacterial synthetic biology to engineer information processing tasks, as an alternative to the traditionally adopted transcriptional regulators. In this work, we investigated and modulated the transfer function of several model systems with specific focus on the cell load caused by the CRISPRi logic inverters. First, an optimal expression cassette for dCas9 was rationally designed to meet the low-burden high-repression trade-off. Then, a circuit collection was studied at varying levels of dCas9 and sgRNAs targeting three different promoters from the popular tet, lac and lux systems, placed at different DNA copy numbers. The CRISPRi NOT gates showed low-burden properties that were exploited to fix a high resource-consuming circuit previously exhibiting a non-functional input-output characteristic, and were also adopted to upgrade a transcriptional regulator-based NOT gate into a 2-input NOR gate. The obtained data demonstrate that CRISPRi-based modules can effectively act as low-burden components in different synthetic circuits for information processing.

9.
N Biotechnol ; 57: 55-66, 2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32247835

RESUMO

Whey permeate (WP) is a lactose-rich waste effluent, generated during cheese manufacturing and further valorization steps, such as protein extraction. The production of ethanol by WP fermentation has been proposed to increase cost-competitiveness of dairy waste processing. In previous work, the Escherichia coli W strain was selected for its efficient growth in dairy waste and it was engineered to convert lactose into ethanol as the main fermentation product from WP and concentrated WP (CWP). To improve its performance, here the lactate dehydrogenase, fumarate reductase and pyruvate formate lyase fermentative routes were disrupted, obtaining new deletion strains. In test tubes, growth and fermentation profiles obtained in standard laboratory media and CWP showed large differences, and were affected by oxygen, medium and ethanologenic gene expression level. Among the tested strains, the one with triple deletion was superior in both high-oxygen and low-oxygen test tube fermentations, in terms of ethanol titer, rate and yield. The improved performance was due to a lower inhibition by medium acidification rather than an improved ethanol flux. The parent and triple deletion strains showed similar performance indexes in pH-controlled bioreactor experiments. However, the deletion strain showed lower base consumption and residual waste, in terms of both dry matter and chemical oxygen demand after distillation. It thus represents a step towards sustainable dairy wastewater valorization for bioenergy production by decreasing process operation costs.


Assuntos
Escherichia coli/metabolismo , Fermentação , Lactose/biossíntese , Engenharia Metabólica , Resíduos/análise , Soro do Leite/metabolismo , Acetiltransferases/metabolismo , L-Lactato Desidrogenase/metabolismo , Succinato Desidrogenase/metabolismo , Soro do Leite/química
10.
Front Plant Sci ; 10: 1535, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31850028

RESUMO

MicroRNAs, highly-conserved small RNAs, act as key regulators of many biological functions in both plants and animals by post-transcriptionally regulating gene expression through interactions with their target mRNAs. The microRNA research is a dynamic field, in which new and unconventional aspects are emerging alongside well-established roles in development and stress adaptation. A recent hypothesis states that miRNAs can be transferred from one species to another and potentially target genes across distant species. Here, we propose to look into the trans-kingdom potential of miRNAs as a tool to bridge conserved pathways between plant and human cells. To this aim, a novel multi-faceted bioinformatic analysis pipeline was developed, enabling the investigation of common biological processes and genes targeted in plant and human transcriptome by a set of publicly available Medicago truncatula miRNAs. Multiple datasets, including miRNA, gene, transcript and protein sequences, expression profiles and genetic interactions, were used. Three different strategies were employed, namely a network-based pipeline, an alignment-based pipeline, and a M. truncatula network reconstruction approach, to study functional modules and to evaluate gene/protein similarities among miRNA targets. The results were compared in order to find common features, e.g., microRNAs targeting similar processes. Biological processes like exocytosis and response to viruses were common denominators in the investigated species. Since the involvement of miRNAs in the regulation of DNA damage response (DDR)-associated pathways is barely explored, especially in the plant kingdom, a special attention is given to this aspect. Hereby, miRNAs predicted to target genes involved in DNA repair, recombination and replication, chromatin remodeling, cell cycle and cell death were identified in both plants and humans, paving the way for future interdisciplinary advancements.

11.
IEEE Trans Biomed Circuits Syst ; 13(1): 248-258, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30489274

RESUMO

Feedback control is ubiquitous in biological systems. It can also play a crucial role in the design of synthetic circuits implementing novel functions in living systems, to achieve self-regulation of gene expression, noise reduction, rise time decrease, or adaptive pathway control. Despite in vitro, in vivo, and ex vivo implementations have been successfully reported, the design of biological close-loop systems with quantitatively predictable behavior is still a major challenge. In this work, we tested a model-based bottom-up design of a synthetic close-loop controller in engineered Escherichia coli, aimed to automatically regulate the concentration of an extracellular molecule, N-(3-oxohexanoyl)-L-homoserine lactone (HSL), by rewiring the elements of heterologous quorum sensing/quenching networks. The synthetic controller was successfully constructed and experimentally validated. Relying on mathematical model and experimental characterization of individual regulatory parts and enzymes, we evaluated the predictability of the interconnected system behavior in vivo. The culture was able to reach an HSL steady-state level of 72 nM, accurately predicted by the model, and showed superior capabilities in terms of robustness against cell density variation and disturbance rejection, compared with a corresponding open-loop circuit. This engineering-inspired design approach may be adopted for the implementation of other close-loop circuits for different applications and contribute to decreasing trial-and-error steps.


Assuntos
Bactérias/metabolismo , Eletricidade , Espaço Extracelular/metabolismo , Engenharia Metabólica/métodos , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Bacillus/metabolismo , Modelos Biológicos , Vibrio/metabolismo
12.
J Biol Eng ; 11: 50, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29255481

RESUMO

BACKGROUND: The study of simplified, ad-hoc constructed model systems can help to elucidate if quantitatively characterized biological parts can be effectively re-used in composite circuits to yield predictable functions. Synthetic systems designed from the bottom-up can enable the building of complex interconnected devices via rational approach, supported by mathematical modelling. However, such process is affected by different, usually non-modelled, unpredictability sources, like cell burden. METHODS: Here, we analyzed a set of synthetic transcriptional cascades in Escherichia coli. We aimed to test the predictive power of a simple Hill function activation/repression model (no-burden model, NBM) and of a recently proposed model, including Hill functions and the modulation of proteins expression by cell load (burden model, BM). To test the bottom-up approach, the circuit collection was divided into training and test sets, used to learn individual component functions and test the predicted output of interconnected circuits, respectively. RESULTS: Among the constructed configurations, two test set circuits showed unexpected logic behaviour. Both NBM and BM were able to predict the quantitative output of interconnected devices with expected behaviour, but only the BM was also able to predict the output of one circuit with unexpected behaviour. Moreover, considering training and test set data together, the BM captures circuits output with higher accuracy than the NBM, which is unable to capture the experimental output exhibited by some of the circuits even qualitatively. Finally, resource usage parameters, estimated via BM, guided the successful construction of new corrected variants of the two circuits showing unexpected behaviour. CONCLUSIONS: Superior descriptive and predictive capabilities were achieved considering resource limitation modelling, but further efforts are needed to improve the accuracy of models for biological engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA