Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Annu Rev Genet ; 46: 371-96, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22974305

RESUMO

The fruit fly, Drosophila melanogaster, is an excellent organism for the study of the genetic and molecular basis of metazoan development. Drosophila provides numerous tools and reagents to unravel the molecular and cellular functions of genes that cause human disease, and the past decade has witnessed a significant expansion of the study of neurodegenerative disease mechanisms in flies. Here we review the interplay between oxidative stress and neuronal toxicity. We cover some of the studies that show how proteasome degradation of protein aggregates, autophagy, mitophagy, and lysosomal function affect the quality control mechanisms required for neuronal survival. We discuss how forward genetic screens in flies have led to the isolation of a few loci that cause neurodegeneration, paving the way for large-scale systematic screens to identify such loci in flies as well as promoting gene discovery in humans.


Assuntos
Drosophila melanogaster/metabolismo , Doenças Neurodegenerativas/patologia , Estresse Oxidativo , Ubiquitina/metabolismo , Animais , Autofagia , Modelos Animais de Doenças , Drosophila melanogaster/genética , Humanos , Longevidade/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transmissão Sináptica , Ubiquitina/genética
2.
Science ; 284(5421): 1837-41, 1999 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-10364557

RESUMO

The mammalian inner ear contains the cochlea and vestibular organs, which are responsible for hearing and balance, respectively. The epithelia of these sensory organs contain hair cells that function as mechanoreceptors to transduce sound and head motion. The molecular mechanisms underlying hair cell development and differentiation are poorly understood. Math1, a mouse homolog of the Drosophila proneural gene atonal, is expressed in inner ear sensory epithelia. Embryonic Math1-null mice failed to generate cochlear and vestibular hair cells. This gene is thus required for the genesis of hair cells.


Assuntos
Orelha Interna/embriologia , Genes Essenciais , Células Ciliadas Auditivas Internas/citologia , Fatores de Transcrição/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Calbindina 2 , Diferenciação Celular , Cóclea/embriologia , Cóclea/metabolismo , Cóclea/ultraestrutura , Orelha Interna/metabolismo , Orelha Interna/ultraestrutura , Epitélio/metabolismo , Epitélio/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento , Marcação de Genes , Células Ciliadas Auditivas Internas/metabolismo , Camundongos , Microscopia Eletrônica , Cadeias Pesadas de Miosina/biossíntese , Proteína G de Ligação ao Cálcio S100/biossíntese , Sáculo e Utrículo/embriologia , Sáculo e Utrículo/metabolismo , Sáculo e Utrículo/ultraestrutura , Células-Tronco/citologia
3.
Neuron ; 13(5): 1099-108, 1994 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-7946348

RESUMO

The mammalian homolog of the yeast Sec1p, n-Sec1/Munc-18 has been demonstrated to bind the presynaptic membrane protein syntaxin, a putative synaptic vesicle docking protein. To determine the role of n-Sec1/Munc-18 in neurotransmitter release in vivo, we have overexpressed the Drosophila homolog, rop, in third instar larvae and measured the electrophysiological consequences at the neuromuscular junction. A 3- to 5-fold induction of the rop protein causes a dramatic decrease in neurotransmitter release, suggesting rop may restrict the ability of vesicles to dock or of docked vesicles to fuse. Consistent with this hypothesis, rop overexpression also reduces the number of spontaneous vesicle fusions by more than 50%, and repetitive stimulation results in significant decreases in evoked responses similar to those observed in rab3a mutant mice. However, rop overexpression does not alter significantly the Ca2+ dependence of neurotransmitter release. We propose that the Drosophila n-Sec1/Munc-18 homolog plays a negative role in neurotransmitter release in vivo, in addition to its previously identified positive function, possibly by modulation of docking of synaptic vesicles or activation of a pre-fusion complex at the active zone.


Assuntos
Proteínas de Drosophila , Proteínas do Tecido Nervoso/fisiologia , Junção Neuromuscular/fisiologia , Neurotransmissores/metabolismo , Animais , Animais Geneticamente Modificados , Cálcio/fisiologia , Drosophila melanogaster , Potenciais Evocados , Transmissão Sináptica
4.
Neuron ; 13(2): 269-87, 1994 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-8060613

RESUMO

Through a systematic genetic screen, we have identified 55 mutations that affect the development of the PNS of Drosophila embryos. These mutations specify 13 novel and 5 previously characterized genes and define new phenotypes for 2 other known genes. Five classes of mutant phenotypes were identified in the screen: gain of neurons, loss of neurons, abnormal position of chordotonal neurons, aberrant neuronal trajectories, and abnormal morphology of neurons. Phenotypic analyses of mutations identified in this study revealed three novel aspects of PNS development. First, we have identified a novel gene that may be required to define glial versus neuronal cell identity. Second, our data indicate that neuronal migration plays an important role in pattern formation in the embryonic PNS. Third, we have identified mutations that cause a lack of sensory organs, but unlike mutations in proneural genes, do not affect the formation of sensory organ precursors. These genes may be required for key aspects of neuronal differentiation. Our studies suggest that approximately 70 essential genes are required for proper PNS development in Drosophila embryos.


Assuntos
Drosophila melanogaster/embriologia , Sistema Nervoso Periférico/embriologia , Animais , Anticorpos Monoclonais , Mapeamento Cromossômico , Drosophila melanogaster/genética , Mutagênese , Neurônios/citologia
5.
Neuron ; 25(3): 549-61, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10774724

RESUMO

Drosophila atonal (ato) is the proneural gene of the chordotonal organs (CHOs) in the peripheral nervous system (PNS) and the larval and adult photoreceptor organs. Here, we show that ato is expressed at multiple stages during the development of a lineage of central brain neurons that innervate the optic lobes and are required for eclosion. A novel fate mapping approach shows that ato is expressed in the embryonic precursors of these neurons and that its expression is reactivated in third instar larvae (L3). In contrast to its function in the PNS, ato does not act as a proneural gene in the embryonic brain. Instead, ato performs a novel function, regulating arborization during larval and pupal development by interacting with Notch.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Neuritos/química , Neuritos/fisiologia , Animais , Axônios/química , Axônios/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Proteínas de Ligação a DNA/análise , Drosophila , Proteínas de Drosophila , Gânglios dos Invertebrados/citologia , Gânglios dos Invertebrados/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Larva/fisiologia , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso , Neurônios/química , Neurônios/fisiologia , Neurônios/ultraestrutura , Pupa/fisiologia , RNA Mensageiro/análise , Receptores Notch , Células-Tronco/química , Células-Tronco/fisiologia , Células-Tronco/ultraestrutura , Vias Visuais/química , Vias Visuais/citologia , Vias Visuais/fisiologia
6.
Neuron ; 26(1): 45-50, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10798391

RESUMO

The recent completion of the Drosophila genome sequence opens new avenues for neurobiology research. We screened the fly genome sequence for homologs of mammalian genes implicated directly or indirectly in exocytosis and endocytosis of synaptic vesicles. We identified fly homologs for 93% of the vertebrate genes that were screened. These are on average 60% identical and 74% similar to their vertebrate counterparts. This high degree of conservation suggests that little protein diversification has been tolerated in the evolution of synaptic transmission. Finally, and perhaps most exciting for Drosophila neurobiologists, the genomic sequence allows us to identify P element transposon insertions in or near genes, thereby allowing rapid isolation of mutations in genes of interest. Analysis of the phenotypes of these mutants should accelerate our understanding of the role of numerous proteins implicated in synaptic transmission.


Assuntos
Drosophila/genética , Evolução Molecular , Genoma , Vesículas Sinápticas/genética , Animais , Endocitose/genética , Exocitose/genética , Transmissão Sináptica/genética
7.
Neuron ; 15(3): 663-73, 1995 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-7546745

RESUMO

In synaptic transmission, vesicles are proposed to dock at presynaptic active zones by the association of synaptobrevin (v-SNARE) with syntaxin (t-SNARE). We test this hypothesis in Drosophila strains lacking neural synaptobrevin (n-synaptobrevin) or syntaxin. We showed previously that loss of either protein completely blocks synaptic transmission. Here, we attempt to establish the level of this blockade. Ultrastructurally, vesicles are still targeted to the presynaptic membrane and dock normally at specialized release sites. These vesicles are mature and functional since spontaneous vesicle fusion persists in the absence of n-synaptobrevin and since vesicle fusion is triggered by hyperosmotic saline in the absence of syntaxin. We conclude that the SNARE hypothesis cannot fully explain the role of these proteins in synaptic transmission. Instead, both proteins play distinct roles downstream of docking.


Assuntos
Drosophila/fisiologia , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Vesículas Sinápticas/metabolismo , Animais , Animais Geneticamente Modificados , Sítios de Ligação , Viúva Negra , Cálcio/farmacologia , Drosophila/embriologia , Drosophila/genética , Fusão de Membrana/fisiologia , Proteínas de Membrana/genética , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas Qa-SNARE , Proteínas R-SNARE , Venenos de Aranha/farmacologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/ultraestrutura
8.
Neuron ; 23(3): 593-605, 1999 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10433270

RESUMO

Biochemical studies suggest that syntaxin 1A participates in multiple protein-protein interactions in the synaptic terminal, but the in vivo significance of these interactions is poorly understood. We used a targeted mutagenesis approach to eliminate specific syntaxin binding interactions and demonstrate that Drosophila syntaxin 1A plays multiple regulatory roles in neurotransmission in vivo. Syntaxin mutations that eliminate ROP/Munc-18 binding display increased neurotransmitter release, suggesting that ROP inhibits neurosecretion through its interaction with syntaxin. Syntaxin mutations that block Ca2+ channel binding also cause an increase in neurotransmitter release, suggesting that syntaxin normally functions in inhibiting Ca2+ channel opening. Additionally, we identify and characterize a syntaxin Ca2+ effector domain, which may spatially organize the Ca2+ channel, cysteine string protein, and synaptotagmin for effective excitation-secretion coupling in the presynaptic terminal.


Assuntos
Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Proteínas de Drosophila , Exocitose/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurotransmissores/metabolismo , Proteínas de Transporte Vesicular , Animais , Animais Geneticamente Modificados , Antígenos de Superfície/química , Ligação Competitiva/genética , Cálcio/metabolismo , Drosophila , Eletrofisiologia , Proteínas Munc18 , Contração Muscular , Mutagênese Sítio-Dirigida/fisiologia , Proteínas do Tecido Nervoso/química , Estrutura Terciária de Proteína , Transmissão Sináptica/genética , Vesículas Sinápticas/química , Vesículas Sinápticas/metabolismo , Sintaxina 1
9.
Neuron ; 21(6): 1465-75, 1998 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9883738

RESUMO

Clathrin-mediated endocytosis is thought to involve the activity of the clathrin adaptor protein AP180. However, the role of this protein in endocytosis in vivo remains unknown. Here, we show that a mutation that eliminates an AP180 homolog (LAP) in Drosophila severely impairs the efficiency of synaptic vesicle endocytosis and alters the normal localization of clathrin in nerve terminals. Most importantly, the size of both synaptic vesicles and quanta is significantly increased in lap mutants. These results provide novel insights into the molecular mechanism of endocytosis and reveal a role for AP180 in regulating vesicle size through a clathrin-dependent reassembly process.


Assuntos
Proteínas de Ligação a DNA/genética , Endocitose , Proteínas Monoméricas de Montagem de Clatrina , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Vesículas Sinápticas/fisiologia , Vesículas Sinápticas/ultraestrutura , Proteínas Adaptadoras de Transporte Vesicular , Sequência de Aminoácidos , Animais , Axônios/fisiologia , Axônios/ultraestrutura , Proteínas Estimuladoras de Ligação a CCAAT , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Drosophila/embriologia , Drosophila/genética , Embrião não Mamífero/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Biblioteca Gênica , Dados de Sequência Molecular , Terminações Nervosas/fisiologia , Terminações Nervosas/ultraestrutura , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Alinhamento de Sequência
10.
Neuron ; 30(2): 369-83, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11395000

RESUMO

Myelinated fibers are organized into distinct domains that are necessary for saltatory conduction. These domains include the nodes of Ranvier and the flanking paranodal regions where glial cells closely appose and form specialized septate-like junctions with axons. These junctions contain a Drosophila Neurexin IV-related protein, Caspr/Paranodin (NCP1). Mice that lack NCP1 exhibit tremor, ataxia, and significant motor paresis. In the absence of NCP1, normal paranodal junctions fail to form, and the organization of the paranodal loops is disrupted. Contactin is undetectable in the paranodes, and K(+) channels are displaced from the juxtaparanodal into the paranodal domains. Loss of NCP1 also results in a severe decrease in peripheral nerve conduction velocity. These results show a critical role for NCP1 in the delineation of specific axonal domains and the axon-glia interactions required for normal saltatory conduction.


Assuntos
Axônios/fisiologia , Moléculas de Adesão Celular Neuronais , Proteínas de Drosophila , Glicoproteínas de Membrana/fisiologia , Proteínas de Membrana/fisiologia , Fibras Nervosas Mielinizadas/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neuroglia/fisiologia , Neuropeptídeos/fisiologia , Nervo Óptico/fisiologia , Receptores de Superfície Celular/fisiologia , Nervo Isquiático/fisiologia , Envelhecimento , Animais , Clonagem Molecular , Drosophila , Feminino , Biblioteca Genômica , Heterozigoto , Homozigoto , Humanos , Masculino , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Fibras Nervosas Mielinizadas/ultraestrutura , Proteínas do Tecido Nervoso/genética , Neuropeptídeos/deficiência , Neuropeptídeos/genética , Canais de Potássio/fisiologia , Receptores de Superfície Celular/genética , Mapeamento por Restrição
11.
Neuron ; 30(2): 411-22, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11395003

RESUMO

The proprioceptive system provides continuous positional information on the limbs and body to the thalamus, cortex, pontine nucleus, and cerebellum. We showed previously that the basic helix-loop-helix transcription factor Math1 is essential for the development of certain components of the proprioceptive pathway, including inner-ear hair cells, cerebellar granule neurons, and the pontine nuclei. Here, we demonstrate that Math1 null embryos lack the D1 interneurons and that these interneurons give rise to a subset of proprioceptor interneurons and the spinocerebellar and cuneocerebellar tracts. We also identify three downstream genes of Math1 (Lh2A, Lh2B, and Barhl1) and establish that Math1 governs the development of multiple components of the proprioceptive pathway.


Assuntos
Encéfalo/embriologia , Interneurônios/fisiologia , Propriocepção/fisiologia , Medula Espinal/embriologia , Fatores de Transcrição/metabolismo , Animais , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Padronização Corporal , Encéfalo/fisiologia , Cerebelo/embriologia , Cerebelo/fisiologia , Desenvolvimento Embrionário e Fetal , Regulação da Expressão Gênica no Desenvolvimento , Sequências Hélice-Alça-Hélice , Heterozigoto , Proteínas de Homeodomínio/genética , Proteínas com Homeodomínio LIM , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Propriocepção/genética , Proteínas Repressoras , Pele/inervação , Medula Espinal/fisiologia , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , beta-Galactosidase/genética
12.
Curr Top Dev Biol ; 121: 111-171, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28057298

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that affects upper and/or lower motor neurons. It usually affects people between the ages of 40-70. The average life expectancy is about 3-5 years after diagnosis and there is no effective cure available. Identification of variants in more than 20 different loci has provided insight into the pathogenic molecular mechanisms mediating disease pathogenesis. In this review, we focus on seven ALS-causing genes: TDP-43, FUS, C9orf72, VCP, UBQLN2, VAPB and SOD-1, which encompass about 90% of the variants causing familial ALS. We examine the biological functions of these genes to assess how these pathogenic variants contribute to ALS pathogenesis by integrating findings from studies in Drosophila melanogaster and mammals. Additionally, we highlight the functional and genetic connections between these loci. Altogether, this review reveals that the majority of biological studies converge on defects in proteostasis due to the mislocalization of TDP-43 and/or altering the function of specific proteins mediating or modulating proteasomal degradation.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Proteínas de Ligação a DNA/metabolismo , Homeostase , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Animais , Humanos , Processamento Pós-Transcricional do RNA
13.
Trends Neurosci ; 18(4): 177-83, 1995 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-7778189

RESUMO

Although numerous electrophysiological and biochemical studies have defined many of the properties of the putative Ca2+ receptor for exocytosis at the synapse, the molecular mechanisms that couple influx of Ca2+ and release of neurotransmitter have remained elusive. Several proteins have emerged recently as putative Ca2+ sensors. Interestingly, one of these proteins, synaptotagmin, shares many properties with the putative Ca2+ receptor. Recent genetic experiments in Caenorhabditis elegans, Drosophila and mouse have provided important insights about synaptotagmin's role in neurotransmitter release. These experiments, combined with electrophysiological and biochemical studies, suggest that synaptotagmin is a key Ca2+ sensor, converting the ubiquitously used cellular secretory pathway into a Ca(2+)-regulated exocytotic pathway.


Assuntos
Proteínas de Ligação ao Cálcio , Cálcio/fisiologia , Glicoproteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Vesículas Sinápticas/fisiologia , Animais , Evolução Biológica , Exocitose/fisiologia , Humanos , Glicoproteínas de Membrana/genética , Mutação , Proteínas do Tecido Nervoso/genética , Neurotransmissores/metabolismo , Sinaptotagminas
14.
Trends Neurosci ; 21(10): 444-9, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9786343

RESUMO

Axonal insulation is of key importance for the proper propagation of action potentials. In Drosophila and other invertebrates, it has recently been demonstrated that septate junctions play an essential role in axonal insulation or blood-brain-barrier formation. Neurexin IV, a molecular component of Drosophila septate junctions, has been shown to be essential for axonal insulation in the PNS in embryos and larvae. Interestingly, a vertebrate homolog of Neurexin IV, caspr--also named paranodin--has been shown to localize to septate-like junctional structures. These vertebrate junctions are localized to the paranodal region of the nodes of Ranvier, between axons and Schwann cells. Caspr/paranodin might play an important role in barrier formation, and link neuronal membrane components with the axonal cytoskeletal network.


Assuntos
Axônios/metabolismo , Barreira Hematoencefálica/fisiologia , Moléculas de Adesão Celular Neuronais , Proteínas de Drosophila , Proteínas de Insetos/fisiologia , Glicoproteínas de Membrana/fisiologia , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neuroglia/metabolismo , Neuropeptídeos/fisiologia , Receptores de Superfície Celular/fisiologia , Potenciais de Ação/fisiologia , Animais , Axônios/ultraestrutura , Drosophila/fisiologia , Estrutura Molecular , Bainha de Mielina/fisiologia , Neuroglia/ultraestrutura , Neurotransmissores/metabolismo , Nós Neurofibrosos/ultraestrutura , Membranas Sinápticas/ultraestrutura
15.
Curr Opin Neurobiol ; 7(5): 624-30, 1997 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9384538

RESUMO

Recent studies of mutations of Drosophila proteins implicated in synaptic transmission have yielded new insights into the roles of these proteins and the pathways in which they function. Analysis of mutant embryos lacking syntaxin or synaptobrevin suggests that these proteins perform distinct functions after vesicle docking with the presynaptic membrane. In addition, characterization of Drosophila endocytotic mutants provides in vivo evidence for the presence of different endocytotic pathways at a single synapse.


Assuntos
Transmissão Sináptica/genética , Animais , Drosophila , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Transmissão Sináptica/fisiologia
16.
Genetics ; 169(2): 783-94, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15545640

RESUMO

Bonus, a Drosophila TIF1 homolog, is a nuclear receptor cofactor required for viability, molting, and numerous morphological events. Here we establish a role for Bonus in the modulation of chromatin structure. We show that weak loss-of-function alleles of bonus have a more deleterious effect on males than on females. This male-enhanced lethality is not due to a defect in dosage compensation or somatic sex differentiation, but to the presence of the Y chromosome. Additionally, we show that bonus acts as both an enhancer and a suppressor of position-effect variegation. By immunostaining, we demonstrate that Bonus is associated with both interphase and prophase chromosomes and through chromatin immunoprecipitation show that two of these sites correspond to the histone gene cluster and the Stellate locus.


Assuntos
Cromatina/genética , Proteínas de Drosophila/genética , Drosophila/genética , Proteínas Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/genética , Animais , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Elementos Facilitadores Genéticos , Feminino , Regulação da Expressão Gênica , Genes de Insetos , Imuno-Histoquímica , Masculino , Microscopia Confocal , Mutação , Proteínas Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Cromossomo Y
17.
J Neurosci ; 21(23): 9142-50, 2001 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-11717347

RESUMO

The cytoplasmic H3 helical domain of syntaxin is implicated in numerous protein-protein interactions required for the assembly and stability of the SNARE complex mediating vesicular fusion at the synapse. Two specific hydrophobic residues (Ala-240, Val-244) in H3 layers 4 and 5 of mammalian syntaxin1A have been suggested to be involved in SNARE complex stability and required for the inhibitory effects of syntaxin on N-type calcium channels. We have generated the equivalent double point mutations in Drosophila syntaxin1A (A243V, V247A; syx(4) mutant) to examine their significance in synaptic transmission in vivo. The syx(4) mutant animals are embryonic lethal and display severely impaired neuronal secretion, although non-neuronal secretion appears normal. Synaptic transmission is nearly abolished, with residual transmission delayed, highly variable, and nonsynchronous, strongly reminiscent of transmission in null synaptotagmin I mutants. However, the syx(4) mutants show no alterations in synaptic protein levels in vivo or syntaxin partner binding interactions in vitro. Rather, syx(4) mutant animals have severely impaired hypertonic saline response in vivo, an assay indicating loss of fusion-competent synaptic vesicles, and in vitro SNARE complexes containing Syx(4) protein have significantly compromised stability. These data suggest that the same residues required for syntaxin-mediated calcium channel inhibition are required for the generation of fusion-competent vesicles in a neuronal-specific mechanism acting at synapses.


Assuntos
Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Transmissão Sináptica/fisiologia , Proteínas de Transporte Vesicular , Substituição de Aminoácidos , Animais , Animais Geneticamente Modificados , Sequência Conservada/fisiologia , Drosophila , Embrião não Mamífero/fisiologia , Potenciais Evocados/fisiologia , Marcação de Genes , Genes Letais , Substâncias Macromoleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Neurônios/metabolismo , Neurotransmissores/genética , Neurotransmissores/metabolismo , Fenótipo , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Proteínas SNARE , Solução Salina Hipertônica/farmacologia , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Sinapses/metabolismo , Sintaxina 1
18.
Genetics ; 138(1): 111-23, 1994 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-8001779

RESUMO

In an attempt to identify mutations in the Drosophila synaptotagmin gene we have isolated many new rearrangements, point mutations and P element insertions in the 22F1-2; 23B1-2 cytological interval on chromosome arm 2L. This interval encompasses 13 cytological bands and is shown to contain 13 essential complementation groups, including decapentaplegic, synaptotagmin and Curly. Through chemical and P element mutagenesis we have isolated seven new deletions, which combined with previously isolated rearrangements, have allowed us to order most genes in the interval. A genomic walk covering approximately 100 kb within this interval spans at least five essential genes as identified by chromosomal aberrations. Preliminary phenotypic characterizations of the mutant phenotype and lethal phase is presented for many mutations. Three loci within this interval are shown to be required for proper neural development. Given that the average number of alleles per complementation group is greater than seven, it is very likely that all essential genes within this cytological interval have been identified.


Assuntos
Drosophila/genética , Genes de Insetos , Alelos , Animais , Mapeamento Cromossômico , Passeio de Cromossomo , Elementos de DNA Transponíveis , Drosophila/crescimento & desenvolvimento , Elementos Facilitadores Genéticos , Feminino , Rearranjo Gênico , Genes Letais , Teste de Complementação Genética , Genótipo , Masculino , Mutação , Sistema Nervoso/crescimento & desenvolvimento , Fenótipo , Mutação Puntual
19.
Genetics ; 115(1): 153-60, 1987 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-3030881

RESUMO

The dunce gene of Drosophila melanogaster codes for a cyclic adenosine-3',5'-monophosphate-specific phosphodiesterase. Mutations of dunce alter or abolish the activity of this enzyme, produce elevated cAMP levels, cause recessive female sterility, and produce learning deficiencies in both sexes. Aberrant male sexual behavior has also been associated with the memory defects of dunce mutants. Here we show that the longevity of dunce mutant females, homozygous for null-enzyme alleles, is reduced by 50% in the presence of males compared to control dunce females kept without males. Mutant dunce females, mate every 22-24 hr. We propose a cause-effect relationship between mating and reduced longevity. Pheromones or peptides transferred during mating may activate adenylate cyclase and create an increase in cAMP levels that cannot be damped in dunce females. This increase may affect basic physiological functions and lead to reduced longevity.


Assuntos
Drosophila melanogaster/genética , 3',5'-AMP Cíclico Fosfodiesterases/genética , Animais , Drosophila melanogaster/fisiologia , Feminino , Longevidade , Masculino , Mutação , Comportamento Sexual Animal
20.
Genetics ; 144(4): 1713-24, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8978057

RESUMO

The role of the Drosophila homologue of syntaxin-1A (syx) in neurotransmission has been extensively studied. However, developmental Northern analyses and in situ hybridization experiments show that SYX mRNA is expressed during all stages and in many tissues. We have isolated new mutations in syx that reveal roles for syx outside the nervous system. In the ovary, SYX is present in the germarium, but it is predominantly localized to nurse cell membranes. Mitotic recombination experiments in the germline show SYX is essential for oogenesis and may participate in membrane biogenesis in the nurse cells. In the early embryo, a large contribution of maternally deposited RNA is present, and the protein is localized at cell membranes during cellularization. After the maternal contribution is depleted, zygotically produced SYX assists secretion events occurring late in embryogenesis, such as cuticle deposition and neurotransmitter release. However, SYX is also required in larval imaginal discs, as certain hypomorphic mutant combinations exhibit rough eyes and wing notch defects indicative of cell death. Furthermore, recombinant clones that lack syx cause cell lethality in the developing eye. We propose that, similar to its roles in cuticle secretion and neurotransmitter release, SYX may mediate membrane assembly events throughout Drosophila development.


Assuntos
Antígenos de Superfície/genética , Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/genética , Alelos , Animais , Membrana Celular/genética , Sobrevivência Celular/genética , Drosophila/citologia , Sintaxina 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA