Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Brachytherapy ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38969605

RESUMO

PURPOSE: This study aimed to develop and validate a Monte Carlo (MC) model for the Papillon+ contact x-ray brachytherapy (CXB) device, producing 50 kilovolt (kV) X-rays, specifically focusing on its application with a 25 mm diameter rectal applicator for contact therapy. MATERIAL AND METHODS: The validation process involved depth dose and transverse dose profile measurements using EBT3 gafchromic films positioned in a plastic water low energy range phantom. The half-value layer (HVL) was further measured and derived from the simulated X-ray spectra. RESULTS: Excellent agreement within ±2% was achieved between the measured and simulated on-axis depth dose curves for the 25 mm rectal applicator. Transverse dose profile measurements showed a high level of agreement between the simulation and measurements, on average 3.1% in contact with the applicator at the surface of the phantom and on average 1.7% at 10 mm depth. A close agreement within 5.5% was noticed concerning the HVL between the measurement and simulation. The simulated gamma spectra and 2D-dose distribution demonstrated a soft X-ray energy spectrum and a uniform dose distribution in contact with the applicator. CONCLUSIONS: An MC model was successfully developed for the Papillon+ eBT device with a 25 mm diameter rectal applicator. The validated model, with its demonstrated accuracy in depth dose and transverse dose profile simulations, is a valuable tool for quality assurance and patient safety and, in a later phase, may be used for treatment planning, dose calculations and tissue inhomogeneity corrections.

2.
Brachytherapy ; 21(6): 887-895, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36130857

RESUMO

INTRODUCTION: The various rectal endoluminal radiation techniques all have steep, but different, dose gradients. In rectal contact brachytherapy (CXB) doses are typically prescribed and reported to the applicator surface and not to the gross tumor volume (GTV), clinical target volume (CTV) or organs at risk (OAR), which is crucial to understand tumor response and toxicity rates. To quantify the above-described problem, we performed a dose modeling study using a fixed prescription dose at the surface of the applicator and varied tumor response scenarios. METHODS: Endorectal ultrasound-based 3D-volume-models of rectal tumors and the rectal wall were used to simulate the delivered dose to GTV, CTV and the rectal wall layers, assuming treatment with Maastro HDR contact applicator for rectal cancer with a fixed prescription dose to the applicator surface (equivalent to 3 × 30 Gy CXB) and various response scenarios. RESULTS: An identical prescribed dose to the surface of the applicator resulted in a broad range of doses delivered to the GTV, CTV and the uninvolved intestinal wall. For example, the equieffective dose in 2 Gy per fraction (EQD2) D90% of the GTV varied between 63 and 231 Gy, whereas the EQD2 D2cc of the rectal wall varied between 97 and 165 Gy. CONCLUSION: Doses prescribed at the surface are not representative of the dose received by the tumor and the bowel wall. This stresses the relevance of dose reporting and prescription to GTV and CTV volumes and OAR in order to gain insight between delivered dose, local control and toxicity and to optimize treatment protocols.


Assuntos
Braquiterapia , Neoplasias do Colo do Útero , Humanos , Feminino , Braquiterapia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Órgãos em Risco , Reto/diagnóstico por imagem
3.
Brachytherapy ; 19(4): 544-553, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32386884

RESUMO

PURPOSE: Dose escalation yields higher complete response to rectal tumors, which may enable the omission of surgery. Dose escalation using 50 kVp contact x-ray brachytherapy (CXB) allow the treatment of a selective volume, resulting in low toxicity and organs-at-risk preservation. However, the use of CXB devices is limited because of its high cost and lack of treatment planning tools. Hence, the MAASTRO applicator (for HDR 192Ir sources) was developed and characterized by measurements and Monte Carlo simulations to be a cost-effective alternative to CXB devices. METHODS AND MATERIALS: A cylindrical applicator with lateral shielding was designed to be used with a rectoscope using its tip as treatment surface. Both the applicator and the rectoscope have a slanted edge to potentially allow easier placement against tumors. The applicator design was achieved by Monte Carlo modeling and validated experimentally with film dosimetry, using the Papillon 50 (P50) device as reference. RESULTS: The applicator delivers CXB doses in less than 9 min using a 20375 U source for a treatment area of approximately 20 × 20 mm2 at 2 mm depth. Normalized at 2 mm, the dose falloff for depths of 0 mm, 5 mm, and 10 mm are 130%, 70%, and 43% for the P50 and 140%, 67%, and 38% for the MAASTRO applicator, respectively. CONCLUSIONS: The MAASTRO applicator was designed to use HDR 192Ir sources to deliver a dose distribution similar to those of CXB devices. The applicator may provide a cost-effective solution for endoluminal boosting with clinical treatment planning system integration.


Assuntos
Braquiterapia/instrumentação , Neoplasias Retais/radioterapia , Braquiterapia/métodos , Simulação por Computador , Desenho de Equipamento , Dosimetria Fotográfica , Humanos , Radioisótopos de Irídio/uso terapêutico , Método de Monte Carlo , Órgãos em Risco , Doses de Radiação , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
4.
Radiother Oncol ; 144: 37-45, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31710942

RESUMO

OBJECTIVE: In selected rectal cancer patients with residual local disease following neoadjuvant chemoradiation (CRT) and the preference of an organ preservation pathway, additional treatment with dose escalation by endoluminal radiotherapy (RT) may ultimately result in a clinical complete response. To date, the widespread introduction of selective endoluminal radiation techniques is hampered by a lack of evidence-based guidelines that describe the radiation treatment volume in relation to the residual tumor mass. In order to convert an incomplete response into a complete one with additional treatment such as dose-escalation with endoluminal RT from a theoretical perspective, it seems important to treat all remaining microscopic tumor cells after CRT. In this setting, residual tumor extension beneath normal appearing mucosa (microscopic intramural spread - MIS) becomes relevant for accurate tumor volume and margin estimation. With the goal of providing evidence-based guidelines that define an appropriate treatment volume and patient selection, we present results from a meta-analysis based on individual patient data of studies that have assessed the extent or range of MIS of rectal cancers after neoadjuvant CRT. This meta-analysis should provide an estimate of the residual tumor volume/extension that needs to be targeted by any additional radiation therapy boost in order to achieve complete tumor eradication after initial incomplete or near-complete response following standard CRT. METHODS AND MATERIALS: A PubMed search was performed. Additional articles were selected based on identification from reference lists. Papers were eligible when reporting MIS in patients who were treated by total mesorectal excision or local excision/transanal endoscopic microsurgery (TEM) after neo-adjuvant long-course CRT. The mean MIS was calculated for the entire group along with the 70th until 95th percentiles. Additional exploratory subgroup analyses were performed. RESULTS: Individual patient data from 349 patients with residual disease from five studies were analyzed. 80% of tumors showed no MIS. In order to appropriately treat MIS in 95% of rectal cancer patients after CRT, a margin of 5.5 mm around the macroscopic tumor would suffice. An exploratory subgroup analysis showed that T-stage after CRT (ypT) and time interval between neoadjuvant CRT and surgery are significant factors predicting the extent of MIS (p < 0.001.) The group of ypT1 had the smallest MIS, followed by the ypT3-4 group, while the ypT2 group had the largest MIS (p < 0.001). Regarding time interval between CRT and surgery, a statistically significant difference was seen when comparing the three time-interval groups (less than 8 weeks, 8-12 weeks, and more than 12 weeks), where waiting more than 12 weeks after CRT resulted in the largest MIS (p < 0.0001). CONCLUSION: Based on this meta-analysis, in order to treat the MIS for 95% of rectal cancer patients after CRT, a Clinical Target Volume (CTV) margin of 5.5 mm from the lateral most edge of the macroscopic tumor would suffice. 80% of tumors showed no MIS and would not require an extra CTV margin for treatment. These findings support the feasibility of localized radiotherapy boosts for dose-escalation to improve response among patients with incomplete response after standard CRT and can also be applied in the surgical setting.


Assuntos
Adenocarcinoma , Neoplasias Retais , Adenocarcinoma/patologia , Quimiorradioterapia Adjuvante , Humanos , Terapia Neoadjuvante , Estadiamento de Neoplasias , Neoplasias Retais/patologia , Neoplasias Retais/terapia , Resultado do Tratamento
5.
Brachytherapy ; 18(6): 852-862, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31327634

RESUMO

PURPOSE: The Bravos afterloader system was released by Varian Medical Systems in October of 2018 for high-dose-rate brachytherapy with 192Ir sources, containing new features such as the CamScale (a new device for daily quality assurance and system recalibration), channel length verification, and different settings for rigid and flexible applicators. This study mechanically evaluated the Bravos system precision and accuracy for clinically relevant scenarios, using dummy sources. METHODS AND MATERIALS: The system was evaluated after three sets of experiments: (1) The CamScale was used to verify inter- and intra-channel dwelling variability and system calibration; (2) A high-speed camera was used to verify the source simulation cable movement inside a transparent quality assurance device, where dwell positions, dwell times, transit times, speed profiles, and accelerations were measured; (3) The source movement inside clinical applicators was captured with an imaging panel while being exposed to an external kV source. Measured and planned dwell positions and times were compared. RESULTS: Maximum deviations between planned and measured dwell positions and times for the source cable were 0.4 mm for the CamScale measurements and 0.07 seconds for the high-speed camera measurements. Mean dwell position deviations inside clinical applicators were below 1.2 mm for all applicators except the ring that required an offset correction of 1 mm to achieve a mean deviation of 0.4 mm. CONCLUSIONS: Features of the Bravos afterloader system provide a robust and precise treatment delivery. All measurements were within manufacturer specifications.


Assuntos
Braquiterapia/instrumentação , Neoplasias/radioterapia , Calibragem , Desenho de Equipamento , Humanos , Radioisótopos de Irídio/uso terapêutico , Dosagem Radioterapêutica
6.
Brachytherapy ; 18(1): 71-86.e5, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30396854

RESUMO

PURPOSE: A clinical complete response is seen after neoadjuvant chemoradiation for rectal tumors in 15%-20% of patients. These patients can potentially be spared mutilating total mesorectal excision surgery through a watch-and-wait policy. Recent studies show that dose escalation by a radiation boost increases the clinical complete response rate. The boost dose to the tumor can be administered through external beam radiotherapy or through internal radiotherapy using techniques like contact therapy, low-dose-rate or high-dose-rate brachytherapy (BT). However, limited information is available concerning treatment-related toxicity of these techniques. With this systematic review, we aim to summarize and compare published data concerning acute and late toxicity after contact X-ray therapy (CXT) and BT for rectal cancer. METHODS AND MATERIALS/RESULTS: Thirty-eight studies reporting toxicity after endorectal radiation techniques for rectal cancer were included, resulting in 3682 patients for analysis. Direct comparison of toxicity by the different radiation modes was hampered by various combinations of endorectal techniques, a lack of clear reporting of toxicity scores, dose prescription, technique used, and treated volumes. ≥ Grade 3 rectal toxicity was reported in 2.9% of patients having received only CXT; 6.3% of patients who received only BT had Grade 3 rectal toxicity, and BT also caused Grade 3 urinary toxicity in 1 patient. CONCLUSION: All techniques reported some ≥ Grade 3 toxicity. Toxicity after CXT was confined to the rectum, whereas after BT, urogenital toxicity and skin toxicity were seen as well. Unfortunately, few specific conclusions could be drawn regarding the dose-related risk of toxicity for the various techniques due to nonuniform reporting strategies and missing information. To enable future comparisons and improvements, the endorectal radiation field urgently needs consensus guidelines on dose reporting, dose prescription, treatment volume specification, and toxicity reporting.


Assuntos
Braquiterapia/efeitos adversos , Quimiorradioterapia/efeitos adversos , Terapia Neoadjuvante/efeitos adversos , Lesões por Radiação/etiologia , Neoplasias Retais/radioterapia , Adulto , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Dosagem Radioterapêutica , Reto/efeitos da radiação , Pele/efeitos da radiação , Sistema Urogenital/efeitos da radiação
7.
Brachytherapy ; 17(6): 1037-1044, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30122346

RESUMO

PURPOSE: Dose escalation to rectal tumors leads to higher complete response rates and may thereby enable omission of surgery. Important advantages of endoluminal boosting techniques include the possibility to apply a more selective/localized boost than using external beam radiotherapy. A novel brachytherapy (BT) rectal applicator with lateral shielding was designed to be used with a rectoscope for eye-guided positioning to deliver a dose distribution similar to the one of contact x-ray radiotherapy devices, using commonly available high-dose-rate 192Ir BT sources. METHODS AND MATERIALS: A cylindrical multichannel BT applicator with lateral shielding was designed by Monte Carlo modeling, validated experimentally with film dosimetry and compared with results found in the literature for the Papillon 50 (P50) contact x-ray radiotherapy device regarding rectoscope dimensions, radiation beam shape, dose fall-off, and treatment time. RESULTS: The multichannel applicator designed is able to deliver 30 Gy under 13 min with a 20350 U (5 Ci) source. The use of multiple channels and lateral shielding provide a uniform circular treatment surface with 22 mm in diameter. The resulting dose fall-off is slightly steeper (maximum difference of 5%) than the one generated by the P50 device with the 22 mm applicator. CONCLUSIONS: A novel multichannel rectal applicator for contact radiotherapy with high-dose-rate 192Ir sources that can be integrated with commercially available treatment planning systems was designed to produce a dose distribution similar to the one obtained by the P50 device.


Assuntos
Braquiterapia/instrumentação , Radioisótopos de Irídio/administração & dosagem , Planejamento da Radioterapia Assistida por Computador/instrumentação , Neoplasias Retais/radioterapia , Braquiterapia/métodos , Desenho de Equipamento/métodos , Dosimetria Fotográfica/métodos , Humanos , Método de Monte Carlo , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Reto/efeitos da radiação
8.
Phys Med Biol ; 62(13): 5440-5461, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28609297

RESUMO

Brachytherapy is employed to treat a wide variety of cancers. However, an accurate treatment verification method is currently not available. This study describes a pre-treatment verification system that uses an imaging panel (IP) to verify important aspects of the treatment plan. A detailed modelling of the IP was only possible with an extensive calibration performed using a robotic arm. Irradiations were performed with a high dose rate (HDR) 192Ir source within a water phantom. An empirical fit was applied to measure the distance between the source and the detector so 3D Cartesian coordinates of the dwell positions can be obtained using a single panel. The IP acquires 7.14 fps to verify the dwell times, dwell positions and air kerma strength (Sk). A gynecological applicator was used to create a treatment plan that was registered with a CT image of the water phantom used during the experiments for verification purposes. Errors (shifts, exchanged connections and wrong dwell times) were simulated to verify the proposed verification system. Cartesian source positions (panel measurement plane) have a standard deviation of about 0.02 cm. The measured distance between the source and the panel (z-coordinate) have a standard deviation up to 0.16 cm and maximum absolute error of ≈0.6 cm if the signal is close to sensitive limit of the panel. The average response of the panel is very linear with Sk. Therefore, Sk measurements can be performed with relatively small errors. The measured dwell times show a maximum error of 0.2 s which is consistent with the acquisition rate of the panel. All simulated errors were clearly identified by the proposed system. The use of IPs is not common in brachytherapy, however, it provides considerable advantages. It was demonstrated that the IP can accurately measure Sk, dwell times and dwell positions.


Assuntos
Braquiterapia , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Calibragem , Desenho de Equipamento , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/instrumentação , Robótica , Tomografia Computadorizada por Raios X
9.
Brachytherapy ; 13(6): 632-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25168675

RESUMO

PURPOSE: Brachytherapy dose calculation is commonly performed using the Task Group-No 43 Report-Updated protocol (TG-43U1) formalism. Recently, a more accurate approach has been proposed that can handle tissue composition, tissue density, body shape, applicator geometry, and dose reporting either in media or water. Some model-based dose calculation algorithms are based on Monte Carlo (MC) simulations. This work presents a software platform capable of processing medical images and treatment plans, and preparing the required input data for MC simulations. METHODS AND MATERIALS: The A Medical Image-based Graphical platfOrm-Brachytherapy module (AMIGOBrachy) is a user interface, coupled to the MCNP6 MC code, for absorbed dose calculations. The AMIGOBrachy was first validated in water for a high-dose-rate (192)Ir source. Next, dose distributions were validated in uniform phantoms consisting of different materials. Finally, dose distributions were obtained in patient geometries. Results were compared against a treatment planning system including a linear Boltzmann transport equation (LBTE) solver capable of handling nonwater heterogeneities. RESULTS: The TG-43U1 source parameters are in good agreement with literature with more than 90% of anisotropy values within 1%. No significant dependence on the tissue composition was observed comparing MC results against an LBTE solver. Clinical cases showed differences up to 25%, when comparing MC results against TG-43U1. About 92% of the voxels exhibited dose differences lower than 2% when comparing MC results against an LBTE solver. CONCLUSION: The AMIGOBrachy can improve the accuracy of the TG-43U1 dose calculation by using a more accurate MC dose calculation algorithm. The AMIGOBrachy can be incorporated in clinical practice via a user-friendly graphical interface.


Assuntos
Algoritmos , Braquiterapia/métodos , Método de Monte Carlo , Planejamento da Radioterapia Assistida por Computador/métodos , Interface Usuário-Computador , Anisotropia , Análise de Elementos Finitos , Humanos , Imagens de Fantasmas , Dosagem Radioterapêutica , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA