Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(46): e2210562119, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343224

RESUMO

The development of chimeric antigen receptor (CAR) T cell therapy has become a critical milestone in modern oncotherapy. Despite the remarkable in vitro effectiveness, the problem of safety and efficacy of CAR T cell therapy against solid tumors is challenged by the lack of tumor-specific antigens required to avoid on-target off-tumor effects. Spatially separating the cytotoxic function of CAR T cells from tumor antigen recognition provided by protein mediators allows for the precise control of CAR T cell cytotoxicity. Here, the high affinity and capability of the bacterial toxin-antitoxin barnase-barstar system were adopted to guide CAR T cells to solid tumors. The complementary modules based on (1) ankyrin repeat (DARPin)-barnase proteins and (2) barstar-based CAR (BsCAR) were designed to provide switchable targeting to tumor cells. The alteration of the DARPin-barnase switches enabled the targeting of different tumor antigens with a single BsCAR. A gradual increase in cytokine release and tunable BsCAR T cell cytotoxicity was achieved by varying DARPin-barnase loads. Switchable BsCAR T cell therapy was able to eradicate the HER2+ ductal carcinoma in vivo. Guiding BsCAR T cells by DARPin-barnase switches provides a universal approach for a controlled multitargeted adoptive immunotherapy.


Assuntos
Neoplasias , Linfócitos T , Humanos , Receptores de Antígenos de Linfócitos T , Imunoterapia Adotiva , Neoplasias/metabolismo , Antígenos de Neoplasias
2.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473856

RESUMO

Myelin basic protein (MBP) is the second most abundant protein in the central nervous system and is responsible for structural maintenance of the myelin sheath covering axons. Previously, we showed that MBP has a more proactive role in the oligodendrocyte homeostasis, interacting with membrane-associated proteins, including integral membrane protein 2B (ITM2B or Bri2) that is associated with familial dementias. Here, we report that the molecular dynamics of the in silico-generated MBP-Bri2 complex revealed that MBP covers a significant portion of the Bri2 ectodomain, assumingly trapping the furin cleavage site, while the surface of the BRICHOS domain, which is responsible for the multimerization and activation of the Bri2 high-molecular-weight oligomer chaperone function, remains unmasked. These observations were supported by the co-expression of MBP with Bri2, its mature form, and disease-associated mutants, which showed that in mammalian cells, MBP indeed modulates the post-translational processing of Bri2 by restriction of the furin-catalyzed release of its C-terminal peptide. Moreover, we showed that the co-expression of MBP and Bri2 also leads to an altered cellular localization of Bri2, restricting its membrane trafficking independently of the MBP-mediated suppression of the Bri2 C-terminal peptide release. Further investigations should elucidate if these observations have physiological meaning in terms of Bri2 as a MBP chaperone activated by the MBP-dependent postponement of Bri2 membrane trafficking.


Assuntos
Furina , Glicoproteínas de Membrana , Animais , Furina/metabolismo , Proteína Básica da Mielina , Proteínas de Membrana/metabolismo , Peptídeos , Mamíferos/metabolismo
3.
Biochemistry (Mosc) ; 88(12): 2063-2072, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38462450

RESUMO

Genome stability is critical for normal functioning of cells, it depends on accuracy of DNA replication, chromosome segregation, and DNA repair. Cellular defense mechanisms against DNA damage are important for preventing cancer development and aging. The E3 ubiquitin ligase RNF168 of the RING superfamily is an essential component of the complex responsible for ubiquitination of the H2A/H2A.X histones near DNA double-strand breaks, which is a key step in attracting repair factors to the damage site. In this study, we unequivocally showed that RNF168 does not have the ability to directly distinguish architecture of polyubiquitin chains, except for the tropism of its two ubiquitin-binding domains UDM1/2 to K63 ubiquitin chains. Analysis of intracellular chromatosomal environment of the full-length RNF168 and its domains using the ligand-induced bioluminescence resonance energy transfer (BRET) revealed that the C-terminal part of UDM1 is associated with the K63 ubiquitin chains; RING and the N-terminal part of UDM2 are sterically close to the K63- and K48-ubiquitin chains, while the C-terminal part of UDM1 is co-localized with all possible ubiquitin variants. Our observations together with the available structural data suggest that the C-terminal part of UDM1 binds the K63 polyubiquitin chains on the linker histone H1; RING and the N-terminal part of UDM2 are located in the central part of nucleosome and sterically close to H1 and K48-ubiquitinated alternative substrates of RNF168, such as JMJD2A/B demethylases, while the C-terminal part of UDM1 is in the region of activated ubiquitin residue associated with E2 ubiquitin ligase, engaged by RNF168.


Assuntos
Ubiquitina-Proteína Ligases , Ubiquitina , Ubiquitina-Proteína Ligases/genética , Ubiquitina/metabolismo , Poliubiquitina/genética , Poliubiquitina/metabolismo , Ubiquitinação , Reparo do DNA , Dano ao DNA
4.
Proc Natl Acad Sci U S A ; 117(44): 27300-27306, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33087570

RESUMO

Conventional "bulk" PCR often yields inefficient and nonuniform amplification of complex templates in DNA libraries, introducing unwanted biases. Amplification of single DNA molecules encapsulated in a myriad of emulsion droplets (emulsion PCR, ePCR) allows the mitigation of this problem. Different ePCR regimes were experimentally analyzed to identify the most robust techniques for enhanced amplification of DNA libraries. A phenomenological mathematical model that forms an essential basis for optimal use of ePCR for library amplification was developed. A detailed description by high-throughput sequencing of amplified DNA-encoded libraries highlights the principal advantages of ePCR over bulk PCR. ePCR outperforms PCR, reduces gross DNA errors, and provides a more uniform distribution of the amplified sequences. The quasi single-molecule amplification achieved via ePCR represents the fundamental requirement in case of complex DNA templates being prone to diversity degeneration and provides a way to preserve the quality of DNA libraries.


Assuntos
Emulsões/química , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Reação em Cadeia da Polimerase/métodos , DNA/genética , Primers do DNA/genética , Biblioteca Gênica , Genoma/genética , Humanos , Modelos Teóricos , Técnicas de Amplificação de Ácido Nucleico/métodos , Moldes Genéticos
5.
Proc Natl Acad Sci U S A ; 117(37): 22841-22848, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32859757

RESUMO

Quantum mechanics/molecular mechanics (QM/MM) maturation of an immunoglobulin (Ig) powered by supercomputation delivers novel functionality to this catalytic template and facilitates artificial evolution of biocatalysts. We here employ density functional theory-based (DFT-b) tight binding and funnel metadynamics to advance our earlier QM/MM maturation of A17 Ig-paraoxonase (WTIgP) as a reactibody for organophosphorus toxins. It enables regulation of biocatalytic activity for tyrosine nucleophilic attack on phosphorus. The single amino acid substitution l-Leu47Lys results in 340-fold enhanced reactivity for paraoxon. The computed ground-state complex shows substrate-induced ionization of the nucleophilic l-Tyr37, now H-bonded to l-Lys47, resulting from repositioning of l-Lys47. Multiple antibody structural homologs, selected by phenylphosphonate covalent capture, show contrasting enantioselectivities for a P-chiral phenylphosphonate toxin. That is defined by crystallographic analysis of phenylphosphonylated reaction products for antibodies A5 and WTIgP. DFT-b analysis using QM regions based on these structures identifies transition states for the favored and disfavored reactions with surprising results. This stereoselection analysis is extended by funnel metadynamics to a range of WTIgP variants whose predicted stereoselectivity is endorsed by experimental analysis. The algorithms used here offer prospects for tailored design of highly evolved, genetically encoded organophosphorus scavengers and for broader functionalities of members of the Ig superfamily, including cell surface-exposed receptors.

6.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768413

RESUMO

Proteasomes exist in mammalian cells in multiple combinatorial variants due to the diverse regulatory particles and exchange of catalytic subunits. Here, using biotin carboxyl carrier domain of transcarboxylase from Propionibacterium shermanii fused with different proteasome subunits of catalytic and regulatory particles, we report comprehensive characterization of highly homogenous one-step purified human constitutive and immune 20S and 26S/30S proteasomes. Hydrolysis of a multiple sclerosis (MS) autoantigen, myelin basic protein (MBP), by engineered human proteasomes with different catalytic phenotypes, revealed that peptides which may be directly loaded on the HLA class I molecules are produced mainly by immunoproteasomes. We detected at least five MBP immunodominant core regions, namely, LPRHRDTGIL, SLPQKSHGR, QDENPVVHFF, KGRGLSLSRF and GYGGRASDY. All peptides, except QDENPVVHFF, which originates from the encephalitogenic MBP part, were associated with HLA I alleles considered to increase MS risk. Prediction of the affinity of HLA class I to this peptide demonstrated that MS-protective HLA-A*44 and -B*35 molecules are high-affinity binders, whereas MS-associated HLA-A*23, -A*24, -A*26 and -B*51 molecules tend to have moderate to low affinity. The HLA-A*44 molecules may bind QDENPVVHFF and its deamidated form in several registers with unprecedently high affinity, probably linking its distinct protective phenotype with thymic depletion of the repertoire of autoreactive cytotoxic T cells or induction of CD8+ regulatory T cells, specific to the encephalitogenic MBP peptide.


Assuntos
Esclerose Múltipla , Proteína Básica da Mielina , Animais , Humanos , Proteína Básica da Mielina/metabolismo , Complexo de Endopeptidases do Proteassoma , Ligantes , Fragmentos de Peptídeos , Peptídeos/química , Esclerose Múltipla/genética , Epitopos Imunodominantes , Antígenos HLA-A , Mamíferos/metabolismo
7.
Biochemistry (Mosc) ; 86(Suppl 1): S71-S95, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33827401

RESUMO

Covalent attachment of ubiquitin residue is not only the proteasomal degradation signal, but also a widespread posttranslational modification of cellular proteins in eukaryotes. One of the most important targets of the regulatory ubiquitination are histones. Localization of ubiquitin residue in different regions of the nucleosome attracts a strictly determined set of cellular factors with varied functionality. Depending on the type of histone and the particular lysine residue undergoing modification, histone ubiquitination can lead both to transcription activation and to gene repression, as well as contribute to DNA repair via different mechanisms. An extremely interesting feature of the family of RING E3 ubiquitin ligases catalyzing histone ubiquitination is the striking structural diversity of the domains providing high specificity of modification very similar initial targets. It is obvious that further elucidation of peculiarities of the ubiquitination system involved in histone modification, as well as understanding of physiological role of this process in the maintenance of homeostasis of both single cells and the entire organism, will substantially expand the possibilities of treating a number of socially significant diseases.


Assuntos
Código das Histonas , Ubiquitina-Proteína Ligases/metabolismo , Animais , Epigênese Genética , Regulação da Expressão Gênica , Histonas/metabolismo , Humanos , Processamento de Proteína Pós-Traducional , Ubiquitina/metabolismo
8.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681871

RESUMO

Infection caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2) in many cases is accompanied by the release of a large amount of proinflammatory cytokines in an event known as "cytokine storm", which is associated with severe coronavirus disease 2019 (COVID-19) cases and high mortality. The excessive production of proinflammatory cytokines is linked, inter alia, to the enhanced activity of receptors capable of recognizing the conservative regions of pathogens and cell debris, namely TLRs, TREM-1 and TNFR1. Here we report that peptides derived from innate immunity protein Tag7 inhibit activation of TREM-1 and TNFR1 receptors during acute inflammation. Peptides from the N-terminal fragment of Tag7 bind only to TREM-1, while peptides from the C-terminal fragment interact solely with TNFR1. Selected peptides are capable of inhibiting the production of proinflammatory cytokines both in peripheral blood mononuclear cells (PBMCs) from healthy donors and in vivo in the mouse model of acute lung injury (ALI) by diffuse alveolar damage (DAD). Treatment with peptides significantly decreases the infiltration of mononuclear cells to lungs in animals with DAD. Our findings suggest that Tag7-derived peptides might be beneficial in terms of the therapy or prevention of acute lung injury, e.g., for treating COVID-19 patients with severe pulmonary lesions.


Assuntos
Lesão Pulmonar Aguda/patologia , Citocinas/química , Peptídeos/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo , Lesão Pulmonar Aguda/metabolismo , Animais , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/metabolismo , Pulmão/patologia , Ativação Linfocitária/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Peptídeos/química , Peptídeos/farmacologia , Ligação Proteica , Receptores Tipo I de Fatores de Necrose Tumoral/antagonistas & inibidores , Receptor Gatilho 1 Expresso em Células Mieloides/antagonistas & inibidores
9.
Proc Natl Acad Sci U S A ; 114(10): 2550-2555, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28202731

RESUMO

Ultrahigh-throughput screening (uHTS) techniques can identify unique functionality from millions of variants. To mimic the natural selection mechanisms that occur by compartmentalization in vivo, we developed a technique based on single-cell encapsulation in droplets of a monodisperse microfluidic double water-in-oil-in-water emulsion (MDE). Biocompatible MDE enables in-droplet cultivation of different living species. The combination of droplet-generating machinery with FACS followed by next-generation sequencing and liquid chromatography-mass spectrometry analysis of the secretomes of encapsulated organisms yielded detailed genotype/phenotype descriptions. This platform was probed with uHTS for biocatalysts anchored to yeast with enrichment close to the theoretically calculated limit and cell-to-cell interactions. MDE-FACS allowed the identification of human butyrylcholinesterase mutants that undergo self-reactivation after inhibition by the organophosphorus agent paraoxon. The versatility of the platform allowed the identification of bacteria, including slow-growing oral microbiota species that suppress the growth of a common pathogen, Staphylococcus aureus, and predicted which genera were associated with inhibitory activity.


Assuntos
Butirilcolinesterase/química , Ensaios de Triagem em Larga Escala/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Paraoxon/química , Análise de Célula Única/instrumentação , Antibiose , Biodiversidade , Comunicação Celular , Emulsões , Citometria de Fluxo , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Óleos Voláteis/química , Fenótipo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Água/química
10.
Int J Mol Sci ; 21(17)2020 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-32872428

RESUMO

Effective and versatile screening of the peptide ligands capable of selectively binding to diverse receptors is in high demand for the state-of-the-art technologies in life sciences, including probing of specificity of the cell surface receptors and drug development. Complex microenvironment and structure of the surface receptors significantly reduce the possibility to determine their specificity, especially when in vitro conditions are utilized. Previously, we designed a publicly available platform for the ultra-high-throughput screening (uHTS) of the specificity of surface-exposed receptors of the living eukaryotic cells, which was done by consolidating the phage display and flow cytometry techniques. Here, we significantly improved this methodology and designed the fADL-1e-based phage vectors that do not require a helper hyperphage for the virion assembly. The enhanced screening procedure was tested on soluble human leukocyte antigen (HLA) class II molecules and transgenic antigen-specific B cells that express recombinant lymphoid B-cell receptor (BCR). Our data suggest that the improved vector system may be successfully used for the comprehensive search of the receptor ligands in either cell-based or surface-immobilized assays.


Assuntos
Técnicas de Visualização da Superfície Celular/métodos , Antígenos de Histocompatibilidade Classe II/análise , Receptores de Antígenos de Linfócitos B/análise , Bacteriófago M13/genética , Linhagem Celular , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Ligantes , Receptores de Antígenos de Linfócitos B/genética
11.
Bioconjug Chem ; 30(5): 1500-1506, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31021608

RESUMO

Specific recognition of ligands by surface receptors of eukaryotic cells is a fundamental process in sensing of the exogenous environment, including cell-to-cell communication. These interactions are therefore widely probed in both basic studies and drug development to enhance or interrupt them. Here, we designed a high-throughput publicly available platform for visualization and selection of eukaryotic cells according to the specificity of surface-exposed receptors by consolidation of phage display and flow cytometry techniques. Polypeptide ligands for membrane receptors are incorporated into every copy of p3 protein of M13K07 bacteriophage, which is intracellularly biotinylated to further accept PE-Cy7-labled streptavidin. Transgenic antigen-specific B-cells expressing membrane-tethered lymphoid B-cell receptor in a single-chain format interacted with engineered bacteriophages exposing the polypeptide ligand with an unprecedented selectivity of 97% and a false-positive detection value of 2.0%. Multivalent binding of the phage bioconjugates with the receptor provided significantly better specificity and sensitivity allowing application of engineered bacteriophage bioconjugates at a concentration 3 orders of magnitude lower in comparison with synthetic biotinylated peptide. We suggest that the platform described in this work may be applied either for routine staining or characterization of orphan membrane receptors exposed on the surface of living mammalian cells in their native environment.


Assuntos
Bacteriófagos/química , Receptores de Superfície Celular/química , Biotina/química , Técnicas de Visualização da Superfície Celular , Sondas Moleculares
12.
Mol Cell Proteomics ; 15(7): 2366-78, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27143409

RESUMO

Acute inflammatory demyelinating polyneuropathy (AIDP) - the main form of Guillain-Barre syndrome-is a rare and severe disorder of the peripheral nervous system with an unknown etiology. One of the hallmarks of the AIDP pathogenesis is a significantly elevated cerebrospinal fluid (CSF) protein level. In this paper CSF peptidome and proteome in AIDP were analyzed and compared with multiple sclerosis and control patients. A total protein concentration increase was shown to be because of even changes in all proteins rather than some specific response, supporting the hypothesis of protein leakage from blood through the blood-nerve barrier. The elevated CSF protein level in AIDP was complemented by activization of protein degradation and much higher peptidome diversity. Because of the studies of the acute motor axonal form, Guillain-Barre syndrome as a whole is thought to be associated with autoimmune response against neurospecific molecules. Thus, in AIDP, autoantibodies against cell adhesion proteins localized at Ranvier's nodes were suggested as possible targets in AIDP. Indeed, AIDP CSF peptidome analysis revealed cell adhesion proteins degradation, however no reliable dependence on the corresponding autoantibodies levels was found. Proteome analysis revealed overrepresentation of Gene Ontology groups related to responses to bacteria and virus infections, which were earlier suggested as possible AIDP triggers. Immunoglobulin blood serum analysis against most common neuronal viruses did not reveal any specific pathogen; however, AIDP patients were more immunopositive in average and often had polyinfections. Cytokine analysis of both AIDP CSF and blood did not show a systemic adaptive immune response or general inflammation, whereas innate immunity cytokines were up-regulated. To supplement the widely-accepted though still unproven autoimmunity-based AIDP mechanism we propose a hypothesis of the primary peripheral nervous system damaging initiated as an innate immunity-associated local inflammation following neurotropic viruses egress, whereas the autoantibody production might be an optional complementary secondary process.


Assuntos
Autoanticorpos/líquido cefalorraquidiano , Citocinas/sangue , Síndrome de Guillain-Barré/imunologia , Esclerose Múltipla/imunologia , Proteômica/métodos , Adesão Celular , Cromatografia Líquida , Feminino , Humanos , Imunidade Inata , Masculino , Espectrometria de Massas em Tandem , Regulação para Cima
13.
Proc Natl Acad Sci U S A ; 110(4): 1243-8, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23297221

RESUMO

The creation of effective bioscavengers as a pretreatment for exposure to nerve agents is a challenging medical objective. We report a recombinant method using chemical polysialylation to generate bioscavengers stable in the bloodstream. Development of a CHO-based expression system using genes encoding human butyrylcholinesterase and a proline-rich peptide under elongation factor promoter control resulted in self-assembling, active enzyme multimers. Polysialylation gives bioscavengers with enhanced pharmacokinetics which protect mice against 4.2 LD(50) of S-(2-(diethylamino)ethyl) O-isobutyl methanephosphonothioate without perturbation of long-term behavior.


Assuntos
Butirilcolinesterase/química , Butirilcolinesterase/farmacocinética , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacocinética , Sequência de Aminoácidos , Animais , Butirilcolinesterase/administração & dosagem , Butirilcolinesterase/genética , Células CHO , Substâncias para a Guerra Química/toxicidade , Cricetinae , Cricetulus , Humanos , Dose Letal Mediana , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Dados de Sequência Molecular , Fármacos Neuroprotetores/administração & dosagem , Compostos Organotiofosforados/antagonistas & inibidores , Compostos Organotiofosforados/toxicidade , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacocinética , Ácidos Siálicos/química
14.
FASEB J ; 27(1): 222-31, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23047895

RESUMO

Multiple sclerosis (MS) is a severe inflammatory and neurodegenerative disease with an autoimmune background. Despite the variety of therapeutics available against MS, the development of novel approaches to its treatment is of high importance in modern pharmaceutics. In this study, experimental autoimmune encephalomyelitis (EAE) in Dark Agouti rats has been treated with immunodominant peptides of the myelin basic protein (MBP) encapsulated in mannosylated small unilamellar vesicles. The results show that liposome-encapsulated MBP(46-62) is the most effective in reducing maximal disease score during the first attack, while MBP(124-139) and MBP(147-170) can completely prevent the development of the exacerbation stage. Both mannosylation of liposomes and encapsulation of peptides are critical for the therapeutic effect, since neither naked peptides nor nonmannosylated liposomes, loaded or empty, have proved effective. The liposome-mediated synergistic effect of the mixture of 3 MBP peptides significantly suppresses the progression of protracted EAE, with the median cumulative disease score being reduced from 22 to 14 points, compared to the placebo group; prevents the production of circulating autoantibodies; down-regulates the synthesis of Th1 cytokines; and induces the production of brain-derived neurotrophic factor in the central nervous system. Thus, the proposed formulation ameliorates EAE, providing for a less severe first attack and rapid recovery from exacerbation, and offers a promising therapeutic modality in MS treatment.


Assuntos
Encefalite/prevenção & controle , Hipersensibilidade/prevenção & controle , Lipossomos , Peptídeos/uso terapêutico , Animais , Western Blotting , Encefalite/etiologia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Hipersensibilidade/complicações , Camundongos , Ratos , Ressonância de Plasmônio de Superfície
15.
Proc Natl Acad Sci U S A ; 108(38): 15954-9, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21896761

RESUMO

Igs offer a versatile template for combinatorial and rational design approaches to the de novo creation of catalytically active proteins. We have used a covalent capture selection strategy to identify biocatalysts from within a human semisynthetic antibody variable fragment library that uses a nucleophilic mechanism. Specific phosphonylation at a single tyrosine within the variable light-chain framework was confirmed in a recombinant IgG construct. High-resolution crystallographic structures of unmodified and phosphonylated Fabs display a 15-Å-deep two-chamber cavity at the interface of variable light (V(L)) and variable heavy (V(H)) fragments having a nucleophilic tyrosine at the base of the site. The depth and structure of the pocket are atypical of antibodies in general but can be compared qualitatively with the catalytic site of cholinesterases. A structurally disordered heavy chain complementary determining region 3 loop, constituting a wall of the cleft, is stabilized after covalent modification by hydrogen bonding to the phosphonate tropinol moiety. These features and presteady state kinetics analysis indicate that an induced fit mechanism operates in this reaction. Mutations of residues located in this stabilized loop do not interfere with direct contacts to the organophosphate ligand but can interrogate second shell interactions, because the H3 loop has a conformation adjusted for binding. Kinetic and thermodynamic parameters along with computational docking support the active site model, including plasticity and simple catalytic components. Although relatively uncomplicated, this catalytic machinery displays both stereo- and chemical selectivity. The organophosphate pesticide paraoxon is hydrolyzed by covalent catalysis with rate-limiting dephosphorylation. This reactibody is, therefore, a kinetically selected protein template that has enzyme-like catalytic attributes.


Assuntos
Anticorpos/química , Cadeias Leves de Imunoglobulina/química , Região Variável de Imunoglobulina/química , Proteínas/química , Algoritmos , Sequência de Aminoácidos , Animais , Anticorpos/genética , Anticorpos/metabolismo , Sítios de Ligação/genética , Células CHO , Calorimetria , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/metabolismo , Cricetinae , Cricetulus , Cristalografia por Raios X , Humanos , Cadeias Leves de Imunoglobulina/genética , Cadeias Leves de Imunoglobulina/metabolismo , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/metabolismo , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Conformação Proteica , Proteínas/genética , Proteínas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Termodinâmica
16.
Biochimie ; 225: 1-9, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38703943

RESUMO

Inhibition of autophagy is one of the hallmarks of the SARS-CoV-2 infection. Recently it was reported that SARS-CoV-2 protein ORF3a inhibits fusion of autophagosomes with lysosomes via interaction with VPS39 thus preventing binding of homotypic fusion and protein sorting (HOPS) complex to RAB7 GTPase. Here we report that myelin basic protein (MBP), a major structural component of the myelin sheath, binds ORF3a and is colocalized with it in mammalian cells. Co-expression of MBP with ORF3a restores autophagy in mammalian cells, inhibited by viral protein. Our data suggest that basic charge of MBP drives suppression of ORF3a-induced autophagy inhibition as its deaminated variants lost ability to bind ORF3a and counteract autophagy blockade. These results together with our recent findings, indicating that MBP interacts with structural components of the vesicle transport machinery-synaptosomal-associated protein 23 (SNAP23), vesicle-associated membrane protein 3 (VAMP3) and Sec1/Munc18-1 family members, may suggest protective role of the MBP in terms of the maintaining of protein traffic and autophagosome-lysosome fusion machinery in oligodendrocytes during SARS-CoV-2 infection. Finally, our data may indicate that deimination of MBP observed in the patients with multiple sclerosis (MS) may contribute to the previously reported worser outcomes of COVID-19 and increase of post-COVID-19 neurologic symptoms in patients with MS.

17.
Front Pharmacol ; 15: 1351655, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38449806

RESUMO

Introduction: The acute respiratory distress syndrome (ARDS), secondary to viral pneumonitis, is one of the main causes of high mortality in patients with COVID-19 (novel coronavirus disease 2019)-ongoing SARS-CoV-2 infection- reached more than 0.7 billion registered cases. Methods: Recently, we elaborated a non-surgical and reproducible method of the unilateral total diffuse alveolar damage (DAD) of the left lung in ICR mice-a publicly available imitation of the ARDS caused by SARS-CoV-2. Our data read that two C-C chemokine receptor 5 (CCR5) ligands, macrophage inflammatory proteins (MIPs) MIP-1α/CCL3 and MIP-1ß/CCL4, are upregulated in this DAD model up to three orders of magnitude compared to the background level. Results: Here, we showed that a nonpeptide compound TAK-779, an antagonist of CCR5/CXCR3, readily prevents DAD in the lung with a single injection of 2.5 mg/kg. Histological analysis revealed reduced peribronchial and perivascular mononuclear infiltration in the lung and mononuclear infiltration of the wall and lumen of the alveoli in the TAK-779-treated animals. Administration of TAK-779 decreased the 3-5-fold level of serum cytokines and chemokines in animals with DAD, including CCR5 ligands MIP-1α/ß, MCP-1, and CCL5. Computed tomography revealed rapid recovery of the density and volume of the affected lung in TAK-779-treated animals. Discussion: Our pre-clinical data suggest that TAK-779 is more effective than the administration of dexamethasone or the anti-IL6R therapeutic antibody tocilizumab, which brings novel therapeutic modality to TAK-779 and other CCR5 inhibitors for the treatment of virus-induced hyperinflammation syndromes, including COVID-19.

18.
Cells ; 12(2)2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36672249

RESUMO

Antigen presentation by major histocompatibility complex class II (MHC-II) molecules is crucial for eliciting an efficient immune response by CD4+ T cells and maintaining self-antigen tolerance. Some MHC-II alleles are known to be positively or negatively associated with the risk of the development of different autoimmune diseases (ADs), including those characterized by the emergence of autoreactive T cells. Apparently, the MHC-II presentation of self-antigens contributes to the autoimmune T cell response, initiated through a breakdown of central tolerance to self-antigens in the thymus. The appearance of autoreactive T cell might be the result of (i) the unusual interaction between T cell receptors (TCRs) and self-antigens presented on MHC-II; (ii) the posttranslational modifications (PTMs) of self-antigens; (iii) direct loading of the self-antigen to classical MHC-II without additional nonclassical MHC assistance; (iv) the proinflammatory environment effect on MHC-II expression and antigen presentation; and (v) molecular mimicry between foreign and self-antigens. The peculiarities of the processes involved in the MHC-II-mediated presentation may have crucial importance in the elucidation of the mechanisms of triggering and developing ADs as well as for clarification on the protective effect of MHC-II alleles that are negatively associated with ADs.


Assuntos
Doenças Autoimunes , Autoimunidade , Humanos , Linfócitos T CD4-Positivos , Antígenos de Histocompatibilidade Classe II/metabolismo , Apresentação de Antígeno , Autoantígenos/metabolismo
19.
Cells ; 12(6)2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36980286

RESUMO

Myelin basic protein (MBP) is one of the key structural elements of the myelin sheath and has autoantigenic properties in multiple sclerosis (MS). Its intracellular interaction network is still partially deconvoluted due to the unfolded structure, abnormally basic charge, and specific cellular localization. Here we used the fusion protein of MBP with TurboID, an engineered biotin ligase that uses ATP to convert biotin to reactive biotin-AMP that covalently attaches to nearby proteins, to determine MBP interactome. Despite evident benefits, the proximity labeling proteomics technique generates high background noise, especially in the case of proteins tending to semi-specific interactions. In order to recognize unique MBP partners, we additionally mapped protein interaction networks for deaminated MBP variant and cyclin-dependent kinase inhibitor 1 (p21), mimicking MBP in terms of natively unfolded state, size and basic amino acid clusters. We found that in the plasma membrane region, MBP is colocalized with adhesion proteins occludin and myelin protein zero-like protein 1, solute carrier family transporters ZIP6 and SNAT1, Eph receptors ligand Ephrin-B1, and structural components of the vesicle transport machinery-synaptosomal-associated protein 23 (SNAP23), vesicle-associated membrane protein 3 (VAMP3), protein transport protein hSec23B and cytoplasmic dynein 1 heavy chain 1. We also detected that MBP potentially interacts with proteins involved in Fe2+ and lipid metabolism, namely, ganglioside GM2 activator protein, long-chain-fatty-acid-CoA ligase 4 (ACSL4), NADH-cytochrome b5 reductase 1 (CYB5R1) and metalloreductase STEAP3. Assuming the emerging role of ferroptosis and vesicle cargo docking in the development of autoimmune neurodegeneration, MBP may recruit and regulate the activity of these processes, thus, having a more inclusive role in the integrity of the myelin sheath.


Assuntos
Biotina , Proteína Básica da Mielina , Proteômica , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/metabolismo , Proteínas , Proteômica/métodos , Mapas de Interação de Proteínas
20.
Front Bioeng Biotechnol ; 11: 1341685, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38304104

RESUMO

The identification of low-frequency antigen-specific CD4+ T cells is crucial for effective immunomonitoring across various diseases. However, this task still encounters experimental challenges necessitating the implementation of enrichment procedures. While existing antigen-specific expansion technologies predominantly concentrate on the enrichment of CD8+ T cells, advancements in methods targeting CD4+ T cells have been limited. In this study, we report a technique that harnesses antigen-presenting extracellular vesicles (EVs) for stimulation and expansion of antigen-specific CD4+ T cells. EVs are derived from a genetically modified HeLa cell line designed to emulate professional antigen-presenting cells (APCs) by expressing key costimulatory molecules CD80 and specific peptide-MHC-II complexes (pMHCs). Our results demonstrate the beneficial potent stimulatory capacity of EVs in activating both immortalized and isolated human CD4+ T cells from peripheral blood mononuclear cells (PBMCs). Our technique successfully expands low-frequency influenza-specific CD4+ T cells from healthy individuals. In summary, the elaborated methodology represents a streamlined and efficient approach for the detection and expansion of antigen-specific CD4+ T cells, presenting a valuable alternative to existing antigen-specific T-cell expansion protocols.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA