Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Immunol ; 208(10): 2363-2375, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35477686

RESUMO

CO2, the primary gaseous product of respiration, is a major physiologic gas, the biology of which is poorly understood. Elevated CO2 is a feature of the microenvironment in multiple inflammatory diseases that suppresses immune cell activity. However, little is known about the CO2-sensing mechanisms and downstream pathways involved. We found that elevated CO2 correlates with reduced monocyte and macrophage migration in patients undergoing gastrointestinal surgery and that elevated CO2 reduces migration in vitro. Mechanistically, CO2 reduces autocrine inflammatory gene expression, thereby inhibiting macrophage activation in a manner dependent on decreased intracellular pH. Pharmacologic or genetic inhibition of carbonic anhydrases (CAs) uncouples a CO2-elicited intracellular pH response and attenuates CO2 sensitivity in immune cells. Conversely, CRISPR-driven upregulation of the isoenzyme CA2 confers CO2 sensitivity in nonimmune cells. Of interest, we found that patients with chronic lung diseases associated with elevated systemic CO2 (hypercapnia) display a greater risk of developing anastomotic leakage following gastrointestinal surgery, indicating impaired wound healing. Furthermore, low intraoperative pH levels in these patients correlate with reduced intestinal macrophage infiltration. In conclusion, CO2 is an immunomodulatory gas sensed by immune cells through a CA2-coupled change in intracellular pH.


Assuntos
Dióxido de Carbono , Anidrase Carbônica II , Dióxido de Carbono/metabolismo , Anidrase Carbônica II/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Hipercapnia/enzimologia , Hipercapnia/metabolismo , Isoenzimas
2.
Cerebrovasc Dis ; 51(2): 178-187, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34496366

RESUMO

INTRODUCTION: The 5-year recurrence risk after ischaemic stroke and transient ischaemic attack (TIA) is 25-30%. Although inflammation may be a target for prevention trials, the contribution of plaque inflammation to acute cerebrovascular events remains unclear. We investigated the association of acute inflammatory cytokines and high-sensitivity C-reactive protein (CRP) with recently symptomatic carotid atherosclerosis in a prospective cohort study. METHODS: Blood and Imaging markers of TIA BIO-TIA) is a multicentre prospective study of imaging and inflammatory markers in patients with TIA. Exclusion criteria were infection and other co-morbid illnesses associated with inflammation. CRP and serum cytokines (interleukin [IL]-6, IL-1ß, IL-8, IL-10, IL-12, interferon-γ [IFN-γ] and tumour necrosis factor-α [TNF-α]) were measured. All patients had carotid imaging. RESULTS: Two hundred and thirty-eight TIA cases and 64 controls (TIA mimics) were included. Forty-nine (20.6%) cases had symptomatic internal carotid artery stenosis. Pro-inflammatory cytokine levels increased in a dose-dependent manner across controls, TIA without carotid stenosis (CS), and TIA with CS (IL-1ß, ptrend = 0.03; IL-6, ptrend < 0.0001; IL-8, ptrend = 0.01; interferon (IFN)-γ, ptrend = 0.005; TNF-α, ptrend = 0.003). Results were unchanged when DWI-positive cases were excluded. On multivariable linear regression, only age (p = 0.01) and CS (p = 0.04) independently predicted log-IL-6. On multivariable Cox regression, CRP was the only independent predictor of 90-day stroke recurrence (adjusted hazard ratio per 1-unit increase 1.03 [95% CI: 1.01-1.05], p = 0.003). CONCLUSION: Symptomatic carotid atherosclerosis was associated with elevated cytokines in TIA patients after controlling for other sources of inflammation. High-sensitivity CRP was associated with recurrent ischaemic stroke at 90 days. These findings implicate acute plaque inflammation in the pathogenesis of cerebral thromboembolism and support a rationale for randomized trials of anti-inflammatory therapy for stroke patients, who were excluded from coronary trials.


Assuntos
Isquemia Encefálica , Doenças das Artérias Carótidas , Estenose das Carótidas , Ataque Isquêmico Transitório , AVC Isquêmico , Placa Aterosclerótica , Acidente Vascular Cerebral , Isquemia Encefálica/complicações , Doenças das Artérias Carótidas/complicações , Doenças das Artérias Carótidas/diagnóstico por imagem , Estenose das Carótidas/complicações , Estenose das Carótidas/diagnóstico por imagem , Estenose das Carótidas/terapia , Ensaios Clínicos como Assunto , Citocinas , Humanos , Inflamação/complicações , Interleucina-6 , Interleucina-8 , Ataque Isquêmico Transitório/complicações , Ataque Isquêmico Transitório/etiologia , Placa Aterosclerótica/complicações , Estudos Prospectivos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/etiologia , Fator de Necrose Tumoral alfa
3.
FASEB J ; 33(10): 11006-11020, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31284764

RESUMO

Monocytes/macrophages drive progression and regression of atherosclerosis. Conjugated linoleic acid (CLA), an anti-inflammatory lipid, mediates atheroprotective effects. We investigated how CLA alters monocyte/macrophage phenotype during attenuated progression and regression of atherosclerosis. Apolipoprotein E knockout (ApoE-/-) mice were fed a high-fat (60%) high-cholesterol (1%) diet (HFHCD) for 2 wk, followed by 6-wk 1% CLA 80:20 supplementation to investigate disease progression. Simultaneously, ApoE-/- mice were fed a 12-wk HFHCD with/without CLA for the final 4 wk to investigate regression. Aortic lesions were quantified by en face staining. Proteomic analysis, real-time quantitative PCR and flow cytometry were used to interrogate monocyte/macrophage phenotypes. CLA supplementation inhibited atherosclerosis progression coincident with decreased proinflammatory and increased anti-inflammatory macrophages. However, CLA-induced regression was associated with increased proinflammatory monocytes resulting in increased proresolving M2 bone marrow-derived macrophages, splenic macrophages, and dendritic cells in lesion-draining lymph nodes. Proteomic analysis confirmed regulation of a proinflammatory bone marrow response, which was abolished upon macrophage differentiation. Thus, in attenuation and regression of atherosclerosis, regardless of the monocyte signature, during monocyte to macrophage differentiation, proresolving macrophages prevail, mediating vascular repair. This study provides novel mechanistic insight into the monocyte/macrophage phenotypes in halted atherosclerosis progression and regression of atherosclerosis.-Bruen, R., Curley, S., Kajani, S., Lynch, G., O'Reilly, M. E., Dillon, E. T., Fitzsimons, S., Mthunzi, L., McGillicuddy, F. C., Belton, O. Different monocyte phenotypes result in proresolving macrophages in conjugated linoleic acid-induced attenuated progression and regression of atherosclerosis.


Assuntos
Aterosclerose/tratamento farmacológico , Diferenciação Celular , Ácidos Linoleicos Conjugados/farmacologia , Fenótipo , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Apolipoproteínas E/genética , Aterosclerose/etiologia , Aterosclerose/metabolismo , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Ácidos Linoleicos Conjugados/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Precursoras de Monócitos e Macrófagos/citologia , Células Precursoras de Monócitos e Macrófagos/efeitos dos fármacos , Células Precursoras de Monócitos e Macrófagos/metabolismo , Proteoma/genética , Proteoma/metabolismo
4.
J Pharmacol Exp Ther ; 370(3): 447-458, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31270216

RESUMO

We have shown that the glucagon-like peptide-1 receptor agonist (GLP-1RA) liraglutide (Lir) inhibits development of early atherosclerosis in vivo by modulating immune cell function. We hypothesized that Lir could attenuate pre-established disease by modulating monocyte or macrophage phenotype to induce atheroprotective responses. Human atherosclerotic plaques obtained postendarterectomy and human peripheral blood macrophages were treated ex vivo with Lir. In parallel, apolipoprotein E-deficient (ApoE-/-) mice received a high-fat, high-cholesterol diet to induce atherosclerosis for 8 weeks, after which ApoE-/- mice received 300 µg/kg of Lir daily or vehicle control for a further 4 weeks to investigate the attenuation of atherosclerosis. Lir inhibited proinflammatory monocyte chemoattractant protein-1 secretion from human endarterectomy samples and monocyte chemoattractant protein-1, tumor necrosis factor-α, and interleukin (IL)-1ß secretion from human macrophages after ex vivo treatment. An increase in CD206 mRNA and IL-10 secretion was also detected, which implies resolution of inflammation. Importantly, Lir significantly attenuated pre-established atherosclerosis in ApoE-/- mice in the whole aorta and aortic root. Proteomic analysis of ApoE-/- bone marrow cells showed that Lir upregulated the proinflammatory cathepsin protein family, which was abolished in differentiated macrophages. In addition, flow cytometry analysis of bone marrow cells induced a shift toward reduced proinflammatory and increased anti-inflammatory macrophages. We concluded that Lir attenuates pre-established atherosclerosis in vivo by altering proinflammatory mediators. This is the first study to describe a mechanism through which Lir attenuates atherosclerosis by increasing bone marrow proinflammatory protein expression, which is lost in differentiated bone marrow-derived macrophages. This study contributes to our understanding of the anti-inflammatory and cardioprotective role of GLP-1RAs. SIGNIFICANCE STATEMENT: It is critical to understand the mechanisms through which liraglutide (Lir) mediates a cardioprotective effect as many type 2 diabetic medications increase the risk of myocardial infarction and stroke. We have identified that Lir reduces proinflammatory immune cell populations and mediators from plaque-burdened murine aortas in vivo and augments proresolving bone marrow-derived macrophages in attenuation of atherosclerotic disease, which provides further insight into the atheroprotective effect of Lir.


Assuntos
Apolipoproteínas E/deficiência , Mediadores da Inflamação/metabolismo , Liraglutida/farmacologia , Fenótipo , Placa Aterosclerótica/imunologia , Placa Aterosclerótica/metabolismo , Animais , Quimiocinas/metabolismo , Progressão da Doença , Feminino , Humanos , Liraglutida/uso terapêutico , Masculino , Camundongos , Placa Aterosclerótica/tratamento farmacológico
5.
Cardiovasc Diabetol ; 16(1): 143, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-29110715

RESUMO

BACKGROUND: Macrophages play a pivotal role in atherosclerotic plaque development. Recent evidence has suggested the glucagon-like peptide-1 receptor (GLP-1R) agonist, liraglutide, can attenuate pro-inflammatory responses in macrophages. We hypothesized that liraglutide could limit atherosclerosis progression in vivo via modulation of the inflammatory response. METHODS: Human THP-1 macrophages and bone marrow-derived macrophages, from both wild-type C57BL/6 (WT) and apolipoprotein E null mice (ApoE-/-) were used to investigate the effect of liraglutide on the inflammatory response in vitro. In parallel, ApoE-/- mice were fed a high-fat (60% calories from fat) high-cholesterol (1%) diet for 8 weeks to induce atherosclerotic disease progression with/without daily 300 µg/kg liraglutide administration for the final 6 weeks. Macrophages were analysed for MΦ1 and MΦ2 macrophage markers by Western blotting, RT-qPCR, ELISA and flow cytometry. Atherosclerotic lesions in aortae from ApoE-/- mice were analysed by en face staining and monocyte and macrophage populations from bone marrow derived cells analysed by flow cytometry. RESULTS: Liraglutide decreased atherosclerotic lesion formation in ApoE-/- mice coincident with a reduction in pro-inflammatory and increased anti-inflammatory monocyte/macrophage populations in vivo. Liraglutide decreased IL-1beta in MΦ0 THP-1 macrophages and bone marrow-derived macrophages from WT mice and induced a significant increase in the MΦ2 surface marker mannose receptor in both MΦ0 and MΦ2 macrophages. Significant reduction in total lesion development was found with once daily 300 µg/kg liraglutide treatment in ApoE-/- mice. Interestingly, liraglutide inhibited disease progression at the iliac bifurcation suggesting that it retards the initiation and development of disease. These results corresponded to attenuated MΦ1 markers (CCR7, IL-6 and TNF-alpha), augmented MΦ2 cell markers (Arg-1, IL-10 and CD163) and finally decreased MΦ1-like monocytes and macrophages from bone marrow-derived cells. CONCLUSIONS: This data supports a therapeutic role for liraglutide as an atheroprotective agent via modulating macrophage cell fate towards MΦ2 pro-resolving macrophages.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Hipoglicemiantes/uso terapêutico , Liraglutida/uso terapêutico , Macrófagos/metabolismo , Fenótipo , Animais , Aterosclerose/tratamento farmacológico , Linhagem Celular , Humanos , Hipoglicemiantes/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Liraglutida/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
6.
Br J Clin Pharmacol ; 83(1): 46-53, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27037767

RESUMO

Atherosclerosis, the underlying cause of heart attack and strokes, is a progressive dyslipidaemic and inflammatory disease where monocyte-derived macrophage cells play a pivotal role. Although most of the mechanisms that contribute to the progression of atherosclerosis have been identified, there is limited information on those governing regression. Conjugated linoleic acid (CLA) is a generic term denoting a group of naturally occurring isomers of linoleic acid (18:2, n6) that differ in the position or geometry (i.e. cis or trans) of their double bonds. The most predominant isomers in ruminant fats are cis-9, trans-11 CLA (c9,t11-CLA), which accounts for more than 80% of CLA isomers in dairy products and trans-10, cis-12 CLA (t10,c12-CLA). Dietary administration of a blend of the two most abundant isomers of CLA has been shown to inhibit the progression and induce the regression of pre-established atherosclerosis. Studies investigating the mechanisms involved in CLA-induced atheroprotective effects are continually emerging. The purpose of this review is to discuss comprehensively the effects of CLA on monocyte/macrophage function in atherosclerosis and to identify possible mechanisms through which CLA mediates its atheroprotective effects.


Assuntos
Aterosclerose/prevenção & controle , Ácidos Linoleicos Conjugados/uso terapêutico , Animais , Aterosclerose/imunologia , Aterosclerose/metabolismo , Citocinas/sangue , Suplementos Nutricionais , Humanos , Ácidos Linoleicos Conjugados/química , Lipídeos/sangue , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Estereoisomerismo
7.
Br J Clin Pharmacol ; 83(1): 152-162, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27151091

RESUMO

Bioactive peptides derived from milk proteins are food components that, in addition to their nutritional value, retain many biological properties and have therapeutic effects in several health disorders, including cardiovascular disease. Amongst these, atherosclerosis is the underlying cause of heart attack and strokes. It is a progressive dyslipidaemic and inflammatory disease where accumulation of oxidized lipids and inflammatory cells leads to the formation of an atherosclerotic plaque in the vessel wall. Milk-derived bioactive peptides can be released during gastrointestinal digestion, food processing or by enzymatic and bacterial fermentation and are considered to promote diverse beneficial effects such as lipid lowering, antihypertensive, immnomodulating, anti-inflammatory and antithrombotic effects. In this review, an overview of the diverse biological effects of these compounds is given, particularly focusing on their beneficial properties on cardiovascular disease and proposing novel mechanisms of action responsible for their bioactivity. Attempts to prevent cardiovascular diseases target modifications of several risk factors such as high blood pressure, obesity, high blood concentrations of lipids or insulin resistance. Milk-derived bioactive peptides are a source of health-enhancing components and the potential health benefit of these compounds has a growing commercial potential. Consequently, they have been incorporated as ingredients in functional foods, as dietary supplements and as pharmaceuticals to promote health and reduce risk of chronic diseases.


Assuntos
Aterosclerose/prevenção & controle , Proteínas do Leite/química , Peptídeos/administração & dosagem , Peptídeos/farmacologia , Suplementos Nutricionais , Fermentação , Humanos , Peptídeos/isolamento & purificação
8.
Prostaglandins Other Lipid Mediat ; 120: 103-14, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25819880

RESUMO

Enhanced biosynthesis of several cytokines, such as, transforming growth factor-ß1 (TGF-ß1), is detected in gestational diabetes mellitus (GDM). In this study, we addressed the question of whether the exposure to the abnormal milieu of GDM in vivo affects gene expression pattern of human umbilical vein endothelial cells (HUVEC) in response to TGF-ß1. We found that HUVEC isolated from GDM (dHUVEC) had reduced migratory capacity versus those of healthy women (nHUVEC) and this quiescent phenotype was associated with higher expression levels of the TGF-ßtype I receptor ALK5 and a slight increase in the endogenous production of TGF-ß1 (mainly in its latent form). Moreover, we performed transcriptome analysis, using microarray technology, of dHUVEC versus nHUVEC, after 3h treatment with exogenous TGF-ß1 (10 ng/ml). The treatment of dHUVEC with TGF-ß1 caused downregulation of the transcription of multiple genes involved in development, cell movement and migration of cells versus TGF-ß1-treated nHUVEC. These changes in transcriptome profile might contribute to GDM-dependent alterations in cardiac morphogenesis and placental development.


Assuntos
Diabetes Gestacional/genética , Diabetes Gestacional/patologia , Feto/patologia , Perfilação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Fator de Crescimento Transformador beta1/metabolismo , Estudos de Casos e Controles , Movimento Celular/efeitos dos fármacos , Diabetes Gestacional/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Fenótipo , Gravidez , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fator de Crescimento Transformador beta1/biossíntese , Fator de Crescimento Transformador beta1/farmacologia
9.
J Immunol ; 191(8): 4326-36, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24048900

RESUMO

Chronic recruitment of monocytes and their subsequent migration through the activated endothelium contribute to atherosclerotic plaque development. Integrin-mediated leukocyte adhesion is central to this process. Conjugated linoleic acid (CLA) has the unique property of inducing regression of pre-established murine atherosclerosis via modulation of monocyte/macrophage function. Understanding the mechanisms through which CLA mediates its atheroprotective effect may help to identify novel pathways that limit or reverse atherosclerosis. In this study, we identified a novel mechanism through which CLA alters monocyte function. We show that CLA inhibits human peripheral blood monocyte cell adhesion to activated endothelial cells via loss of CD18 expression, the ß2 chain of LFA-1 and Mac-1 integrins. In addition, using a static-adhesion assay, we provide evidence that CLA prevents monocytes from binding to ICAM-1 and subsequently reduces the capacity of these cells to polarize. CXCL12-CXCR4 interactions induce a conformational change in ß2 integrins, facilitating leukocyte adhesion. In this study, we demonstrate that CLA inhibits CXCR4 expression, resulting in a failure of monocytes to directionally migrate toward CXCL12. Finally, using intravital microscopy, we show that, during CLA-induced regression of pre-established atherosclerosis in ApoE(-/-) mice, there is reduced leukocyte adhesion and decreased CD18 expression on Gr1(+)/CD115(+) proinflammatory monocytes. In summary, the data presented describe a novel functional role for CLA in the regulation of monocyte adhesion, polarization, and migration.


Assuntos
Antígenos CD18/metabolismo , Adesão Celular/imunologia , Ácidos Linoleicos Conjugados/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Monócitos/fisiologia , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/tratamento farmacológico , Antígenos CD18/biossíntese , Movimento Celular/imunologia , Células Cultivadas , Quimiocina CXCL12/metabolismo , Endotélio/citologia , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Leucócitos/metabolismo , Ácidos Linoleicos Conjugados/farmacologia , Antígeno-1 Associado à Função Linfocitária/biossíntese , Antígeno de Macrófago 1/biossíntese , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Placa Aterosclerótica/metabolismo , Ligação Proteica , Conformação Proteica , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Receptores CXCR4/biossíntese , Receptores CXCR4/metabolismo , Receptores de Quimiocinas/metabolismo
10.
FASEB J ; 27(2): 499-510, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23070607

RESUMO

Conjugated linoleic acid (CLA) induces regression of preestablished atherosclerosis in the ApoE(-/-) mouse. Understanding the mechanisms involved may help in identifying novel pathways associated with the regression of human disease. Animals were administered a 1% cholesterol diet for 12 wk, with 1% CLA supplementation from wk 8 to 12. ApoE(-/-) mice fed only the 1% cholesterol diet for 12 wk were employed as controls. Transcriptomic analysis of mouse aorta showed that many of the components of the IL-10 signaling pathway were modified during CLA-induced regression. Real-time PCR and Western blot analysis showed increased IL-10 receptor expression, phosphorylation of STAT3, and downstream target gene expression in the aorta, alongside an increase in serum IL-10 (79.8 ± 22.4 vs. 41.9 ± 5.5 pg/ml, n = 10; P < 0.01). CLA -supplementation also increased IL-10 production in bone marrow-derived macrophages (143.6 ± 28.6 vs. 94 ± 5.6 pg/ml, n = 5; P < 0.05). To explore the mechanisms for altered IL-10 production, we examined the profile of monocyte/macrophage phenotype in the vessel wall, bone marrow, and spleen. CLA increased macrophage polarization toward an anti-inflammatory M2 phenotype in vivo, increasing the population of Ly6C(lo) monocytes (29 vs. 77 ± 14, n=5, P < 0.05) in the aorta. CLA had similar effects on monocytes/macrophages differentiated from marrow-derived progenitor cells and on splenocytes. The induction of IL-10 on CLA supplementation in this model may reflect a systemic alteration toward an anti-inflammatory phenotype, which, in turn promotes increased vascular infiltration by Ly6C(lo) monocytes. These cells may contribute to CLA-induced disease regression.


Assuntos
Aterosclerose/tratamento farmacológico , Aterosclerose/imunologia , Interleucina-10/imunologia , Ácidos Linoleicos Conjugados/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/imunologia , Aorta/metabolismo , Aorta/patologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/patologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Interleucina-10/sangue , Interleucina-10/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
11.
Eur J Immunol ; 41(10): 2840-51, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21710489

RESUMO

Mesenchymal stem cells (MSCs) inhibit T-cell activation and proliferation but their effects on individual T-cell-effector pathways and on memory versus naïve T cells remain unclear. MSC influence on the differentiation of naïve and memory CD4(+) T cells toward the Th17 phenotype was examined. CD4(+) T cells exposed to Th17-skewing conditions exhibited reduced CD25 and IL-17A expression following MSC co-culture. Inhibition of IL-17A production persisted upon re-stimulation in the absence of MSCs. These effects were attenuated when cell-cell contact was prevented. Th17 cultures from highly purified naïve- and memory-phenotype responders were similarly inhibited. Th17 inhibition by MSCs was reversed by indomethacin and a selective COX-2 inhibitor. Media from MSC/Th17 co-cultures contained increased prostaglandin E2 (PGE2) levels and potently suppressed Th17 differentiation in fresh cultures. MSC-mediated Th17 inhibition was reversed by a selective EP4 antagonist and was mimicked by synthetic PGE2 and a selective EP4 agonist. Activation-induced IL-17A secretion by naturally occurring, effector-memory Th17 cells from a urinary obstruction model was also inhibited by MSC co-culture in a COX-dependent manner. Overall, MSCs potently inhibit Th17 differentiation from naïve and memory T-cell precursors and inhibit naturally-occurring Th17 cells derived from a site of inflammation. Suppression entails cell-contact-dependent COX-2 induction resulting in direct Th17 inhibition by PGE2 via EP4.


Assuntos
Dinoprostona/metabolismo , Células-Tronco Mesenquimais/fisiologia , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Animais , Western Blotting , Linfócitos T CD4-Positivos/metabolismo , Comunicação Celular , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Inibidores de Ciclo-Oxigenase 2/farmacologia , Dinoprostona/biossíntese , Feminino , Citometria de Fluxo , Indometacina/farmacologia , Interleucina-17/antagonistas & inibidores , Interleucina-17/biossíntese , Subunidade alfa de Receptor de Interleucina-2/biossíntese , Ativação Linfocitária , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Receptores de Prostaglandina E Subtipo EP4/agonistas , Células Th17/efeitos dos fármacos
12.
Prostaglandins Other Lipid Mediat ; 98(3-4): 56-62, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22230216

RESUMO

Conjugated linoleic acid (CLA) is a generic term denoting a group of naturally occurring isomers of linoleic acid (18:2, n6) that differ in the position or geometry (i.e. cis or trans) of their double bonds. The predominant isomers in ruminant fats are cis-9,trans-11 CLA (c9,t11-CLA), and trans-10,cis-12 CLA (t10,c12-CLA). The biological activities of CLA have received considerable attention because of its protective effects in cancer, immune function, obesity and atherosclerosis. Importantly, dietary administration of a blend of the two most abundant isomers of CLA, has been shown to inhibit the progression and induce the regression of pre-established atherosclerosis in the ApoE⁻/⁻ murine model. Studies investigating the mechanisms involved in CLA induced protective effects are continually emerging with results from both in vitro and in vivo models yielding confounding and often inconsistent results depending on both the isomer of CLA and the species under investigation. The purpose of this review is to comprehensively discuss the effects of CLA on monocyte/macrophage function in atherosclerosis. This review also discusses the possible mechanisms through which CLA mediates its atheroprotective effects with a particular emphasis on the migratory capacity of the monocyte and the inflammatory and cholesterol homeostasis of the macrophage.


Assuntos
Aterosclerose/tratamento farmacológico , Células Espumosas/patologia , Ácidos Linoleicos Conjugados/química , Ácidos Linoleicos Conjugados/uso terapêutico , Macrófagos/patologia , Monócitos/patologia , Animais , Aterosclerose/etiologia , Aterosclerose/patologia , Células Espumosas/efeitos dos fármacos , Humanos , Isomerismo , Ácidos Linoleicos Conjugados/farmacologia , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Fenótipo
13.
J Extracell Vesicles ; 10(6): 12084, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33936566

RESUMO

Extracellular vesicles (EVs) are emerging as key players in different stages of atherosclerosis. Here we provide evidence that EVs released by mixed aggregates of monocytes and platelets in response to TNF-α display pro-inflammatory actions on endothelial cells and atherosclerotic plaques. Tempering platelet activation with Iloprost, Aspirin or a P2Y12 inhibitor impacted quantity and phenotype of EV produced. Proteomics of EVs from cells activated with TNF-α alone or in the presence of Iloprost revealed a distinct composition, with interesting hits like annexin-A1 and gelsolin. When added to human atherosclerotic plaque explants, EVs from TNF-α stimulated monocytes augmented release of cytokines. In contrast, EVs generated by TNF-α together with Iloprost produced minimal plaque activation. Notably, patients with coronary artery disease that required percutaneous coronary intervention had elevated plasma numbers of monocyte, platelet as well as double positive EV subsets. In conclusion, EVs released following monocyte/platelet activation may play a potential role in the development and progression of atherosclerosis. Whereas attenuating platelet activation modifies EV composition released from monocyte/platelet aggregates, curbing their pro-inflammatory actions may offer therapeutic avenues for the treatment of atherosclerosis.


Assuntos
Vesículas Extracelulares/fisiologia , Monócitos/fisiologia , Placa Aterosclerótica/fisiopatologia , Agregação Plaquetária/fisiologia , Aspirina/farmacologia , Aterosclerose/fisiopatologia , Plaquetas/citologia , Plaquetas/efeitos dos fármacos , Citocinas , Células Endoteliais/efeitos dos fármacos , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Voluntários Saudáveis , Humanos , Inflamação/imunologia , Monócitos/citologia , Ativação Plaquetária/efeitos dos fármacos , Fator de Necrose Tumoral alfa
14.
Front Immunol ; 11: 576516, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391256

RESUMO

Background: Atherosclerosis is a chronic inflammatory disease driven by macrophage accumulation in medium and large sized arteries. Macrophage polarization and inflammation are governed by microRNAs (miR) that regulate the expression of inflammatory proteins and cholesterol trafficking. Previous transcriptomic analysis led us to hypothesize that miR-155-5p (miR-155) is regulated by conjugated linoleic acid (CLA), a pro-resolving mediator which induces regression of atherosclerosis in vivo. In parallel, as extracellular vesicles (EVs) and their miR content have potential as biomarkers, we investigated alterations in urinary-derived EVs (uEVs) during the progression of human coronary artery disease (CAD). Methods: miR-155 expression was quantified in aortae from ApoE-/- mice fed a 1% cholesterol diet supplemented with CLA blend (80:20, cis-9,trans-11:trans-10,cis-12 respectively) which had been previously been shown to induce atherosclerosis regression. In parallel, human polarized THP-1 macrophages were used to investigate the effects of CLA blend on miR-155 expression. A miR-155 mimic was used to investigate its inflammatory effects on macrophages and on ex vivo human carotid endarterectomy (CEA) plaque specimens (n = 5). Surface marker expression and miR content were analyzed in urinary extracellular vesicles (uEVs) obtained from patients diagnosed with unstable (n = 12) and stable (n = 12) CAD. Results: Here, we report that the 1% cholesterol diet increased miR-155 expression while CLA blend supplementation decreased miR-155 expression in the aorta during atherosclerosis regression in vivo. CLA blend also decreased miR-155 expression in vitro in human THP-1 polarized macrophages. Furthermore, in THP-1 macrophages, miR-155 mimic decreased the anti-inflammatory signaling proteins, BCL-6 and phosphorylated-STAT-3. In addition, miR-155 mimic downregulated BCL-6 in CEA plaque specimens. uEVs from patients with unstable CAD had increased expression of miR-155 in comparison to patients with stable CAD. While the overall concentration of uEVs was decreased in patients with unstable CAD, levels of CD45+ uEVs were increased. Additionally, patients with unstable CAD had increased CD11b+ uEVs and decreased CD16+ uEVs. Conclusion: miR-155 suppresses anti-inflammatory signaling in macrophages, is decreased during regression of atherosclerosis in vivo and is increased in uEVs from patients with unstable CAD suggesting miR-155 has potential as a prognostic indicator and a therapeutic target.


Assuntos
Síndrome Coronariana Aguda/urina , Doenças da Aorta/urina , Aterosclerose/urina , Doenças das Artérias Carótidas/metabolismo , Doença da Artéria Coronariana/urina , Vesículas Extracelulares/metabolismo , MicroRNAs/urina , Síndrome Coronariana Aguda/diagnóstico por imagem , Síndrome Coronariana Aguda/genética , Idoso , Animais , Doenças da Aorta/genética , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/patologia , Biomarcadores/urina , Doenças das Artérias Carótidas/genética , Doenças das Artérias Carótidas/patologia , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/genética , Modelos Animais de Doenças , Progressão da Doença , Vesículas Extracelulares/genética , Feminino , Humanos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , MicroRNAs/genética , Pessoa de Meia-Idade , Fosforilação , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Fator de Transcrição STAT3/metabolismo , Células THP-1
15.
Front Pharmacol ; 10: 463, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31139076

RESUMO

Atherosclerosis is a chronic progressive inflammatory disease where advanced lesions can eventually completely obstruct blood flow resulting in clinical events, such as a myocardial infarction or stroke. Monocytes and macrophages are the dominant biologically active immune cells involved in atherosclerosis disease and play a pivotal role during initiation, progression, and regression of disease. Altering macrophage inflammation is critical to induce regression of atherosclerosis and microRNAs (miRs) have emerged as key regulators of the macrophage phenotype. MiRs are small noncoding RNAs that regulate gene expression. They are dysregulated during atherosclerosis development and are key regulators of macrophage function and polarization. MiRs are short nucleotide transcripts that are very stable in circulation and thus have potential as therapeutics and/or biomarkers in the context of atherosclerosis. Of relevance to this review is that inhibition of macrophage-specific miR-155 may be a viable therapeutic strategy to decrease inflammation associated with atherosclerosis. However, further studies on these miRs and advancements in miR therapeutic delivery are required for these therapeutics to advance to the clinical setting. Conjugated linoleic acid (CLA), a pro-resolving lipid mediator, is an agonist of the peroxisome proliferator-activated receptor (PPAR)-γ. The biological activities of CLA have been documented to have anti-atherogenic effects in experimental models of atherosclerosis, inducing regression and impacting on monocyte and macrophage cells. Our work and that of others on PPAR-γ agonists and polyunsaturated fatty acids have shown that these mediators regulate candidate miRNAs and promote pro-resolving atherosclerotic plaque microenvironments.

16.
Schizophr Res ; 209: 141-147, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31080155

RESUMO

Apolipoproteins, which play important roles in lipid metabolism, innate immunity and synaptic signalling, have been implicated in first episode psychosis and schizophrenia. This is the first study to investigate plasma apolipoprotein expression in children with psychotic experiences that persist into adulthood. Here, using semi-targeted proteomic analysis we compared plasma apolipoprotein expression levels in age 12 subjects who reported psychotic experiences at both age 12 and age 18 (n = 37) with age-matched subjects who only experienced psychotic experiences (PEs) at age 12 (n = 38). Participants were recruited from the UK Avon Longitudinal Study of Parents and Children (ALSPAC) cohort who participated in psychiatric assessment interviews at ages 12 and 18. We identified apoE, a protein with significant regulatory activity on cholesterol metabolism in the brain, to be significantly up regulated (p < 0.003) in those with persistent psychotic experiences. We confirmed this finding in these samples using ELISA. Our findings indicate elevated plasma apoE in age 12 children who experience PEs is associated with persistence psychotic experiences.


Assuntos
Apolipoproteínas E/sangue , Delusões/sangue , Alucinações/sangue , Adolescente , Apolipoproteínas/sangue , Criança , Cromatografia Líquida de Alta Pressão , Delusões/fisiopatologia , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Feminino , Alucinações/fisiopatologia , Humanos , Masculino , Prognóstico , Proteômica
17.
Diabetes ; 67(12): 2657-2667, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30213823

RESUMO

Increasing evidence points to the fact that defects in the resolution of inflammatory pathways predisposes individuals to the development of chronic inflammatory diseases, including diabetic complications such as accelerated atherosclerosis. The resolution of inflammation is dynamically regulated by the production of endogenous modulators of inflammation, including lipoxin A4 (LXA4). Here, we explored the therapeutic potential of LXA4 and a synthetic LX analog (Benzo-LXA4) to modulate diabetic complications in the streptozotocin-induced diabetic ApoE-/- mouse and in human carotid plaque tissue ex vivo. The development of diabetes-induced aortic plaques and inflammatory responses of aortic tissue, including the expression of vcam-1, mcp-1, il-6, and il-1ß, was significantly attenuated by both LXA4 and Benzo-LXA4 in diabetic ApoE-/- mice. Importantly, in mice with established atherosclerosis, treatment with LXs for a 6-week period, initiated 10 weeks after diabetes onset, led to a significant reduction in aortic arch plaque development (19.22 ± 2.01% [diabetic]; 12.67 ± 1.68% [diabetic + LXA4]; 13.19 ± 1.97% [diabetic + Benzo-LXA4]). Secretome profiling of human carotid plaque explants treated with LXs indicated changes to proinflammatory cytokine release, including tumor necrosis factor-α and interleukin-1ß. LXs also inhibited platelet-derived growth factor-stimulated vascular smooth muscle cell proliferation and transmigration and endothelial cell inflammation. These data suggest that LXs may have therapeutic potential in the context of diabetes-associated vascular complications.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Aorta/efeitos dos fármacos , Aterosclerose/tratamento farmacológico , Diabetes Mellitus Experimental/tratamento farmacológico , Inflamação/tratamento farmacológico , Lipoxinas/uso terapêutico , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Aterosclerose/etiologia , Quimiocina CCL2/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Experimental/complicações , Humanos , Inflamação/etiologia , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipoxinas/farmacologia , Camundongos , Molécula 1 de Adesão de Célula Vascular/metabolismo
18.
Front Immunol ; 8: 7, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28167941

RESUMO

Dysregulation of inflammatory responses is a hallmark of multiple diseases such as atherosclerosis and rheumatoid arthritis. As constitutively active transcription factors, NR4A nuclear receptors function to control the magnitude of inflammatory responses and in chronic inflammatory disease can be protective or pathogenic. Within this study, we demonstrate that TLR4 stimulation using the endotoxin lipopolysaccharide (LPS) rapidly enhances NR4A1-3 expression in human and murine, primary and immortalized myeloid cells with concomitant gene transcription and protein secretion of MIP-3α, a central chemokine implicated in numerous pathologies. Deficiency of NR4A2 and NR4A3 in human and murine myeloid cells reveals that both receptors function as positive regulators of enhanced MIP-3α expression. In contrast, within the same cell types and conditions, altered NR4A activity leads to suppression of LPS-induced MCP-1 gene and protein expression. An equivalent pattern of inflammatory gene regulation is replicated in TNFα-treated myeloid cells. We show that NF-κB is the critical regulator of NR4A1-3, MIP-3α, and MCP-1 during TLR4 stimulation in myeloid cells and highlight a parallel mechanism whereby NR4A activity can repress or enhance NF-κB target gene expression simultaneously. Mechanistic insight reveals that NR4A2 does not require DNA-binding capacity in order to enhance or repress NF-κB target gene expression simultaneously and establishes a role for NF-κB family member Relb as a novel NR4A target gene involved in the positive regulation of MIP-3α. Thus, our data reveal a dynamic role for NR4A receptors concurrently enhancing and repressing NF-κB activity in myeloid cells leading to altered transcription of key inflammatory mediators.

19.
Diabetes ; 66(8): 2266-2277, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28487436

RESUMO

The let-7 miRNA family plays a key role in modulating inflammatory responses. Vascular smooth muscle cell (SMC) proliferation and endothelial cell (EC) dysfunction are critical in the pathogenesis of atherosclerosis, including in the setting of diabetes. Here we report that let-7 levels are decreased in diabetic human carotid plaques and in a model of diabetes-associated atherosclerosis, the diabetic ApoE-/- mouse. In vitro platelet-derived growth factor (PDGF)- and tumor necrosis factor-α (TNF-α)-induced vascular SMC and EC activation was associated with reduced let-7 miRNA expression via Lin28b, a negative regulator of let-7 biogenesis. Ectopic overexpression of let-7 in SMCs inhibited inflammatory responses including proliferation, migration, monocyte adhesion, and nuclear factor-κB activation. The therapeutic potential of restoring let-7 levels using a let-7 mimic was tested: in vitro in SMCs using an endogenous anti-inflammatory lipid (lipoxin A4), ex vivo in murine aortas, and in vivo via tail vein injection in a 24-h murine model. Furthermore, we delivered let-7 mimic to human carotid plaque ex vivo and observed significant changes to the secretome in response to let-7 therapy. Restoration of let-7 expression could provide a new target for an anti-inflammatory approach in diabetic vascular disease.


Assuntos
Aterosclerose/genética , Estenose das Carótidas/genética , Complicações do Diabetes/genética , MicroRNAs/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Apolipoproteínas E/genética , Artérias Carótidas/citologia , Proliferação de Células/genética , Proteínas de Ligação a DNA/metabolismo , Células Endoteliais/metabolismo , Humanos , Inflamação/genética , Camundongos , Camundongos Endogâmicos NOD , MicroRNAs/administração & dosagem , Músculo Liso Vascular/citologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas de Ligação a RNA , Fator de Necrose Tumoral alfa/metabolismo
20.
Atherosclerosis ; 187(1): 40-9, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16182300

RESUMO

Conjugated linoleic acid (CLA) refers to a group of positional and geometric isomers of linoleic acid and has been shown to suppress the development of atherosclerosis in experimental models. However, the mechanism involved is unclear although it is believed it may act as a cyclooxygenase inhibitor or as an agonist of the nuclear receptors, peroxisome proliferator activated receptors (PPARs). In this study, we examined the effect of cis-9,trans-11:trans-10,cis-12-CLA (80:20 blend) on the regression of pre-established atherosclerosis. ApoE(-/-) mice fed a 1% cholesterol diet were randomized at 8 weeks to continue receiving the diet supplemented with 1% control saturated fat or 1% CLA blend for a further 8 weeks. CLA supplementation did not simply prevent progression but induced almost complete resolution of atherosclerosis. Although CLA inhibited platelet deposition, as detected by staining of platelet glycoprotein alpha11b beta111a, it did not inhibit COX-mediated generation of prostaglandins in this model. However, PPARalpha and PPARgamma expression was increased in the aorta of the CLA-treated animals. This was coincident with decreased macrophage accumulation and decreased expression of the macrophage scavenger receptor CD36 and increased apoptosis in the aorta in vivo. CLA induces the resolution of atherosclerosis by negatively regulating the expression of pro-inflammatory genes and inducing apoptosis in the atherosclerotic lesion.


Assuntos
Aterosclerose/tratamento farmacológico , Ácidos Linoleicos Conjugados/farmacologia , Animais , Aorta/metabolismo , Apoptose , Aterosclerose/metabolismo , Plaquetas/metabolismo , Linhagem Celular , Colesterol/metabolismo , Eicosanoides/urina , Epoprostenol/metabolismo , Homozigoto , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Monócitos/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Tromboxanos/metabolismo , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA