Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Pediatr ; 18(1): 138, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29665810

RESUMO

After publication of the original article [1] it was brought to our attention that author Bouchra Ouled Amar Bencheikh was incorrectly included as Bouchra Oulad Amar Bencheikh.

2.
J Med Genet ; 50(11): 740-4, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23687350

RESUMO

BACKGROUND: Mutations in TSC1 or TSC2 cause the tuberous sclerosis complex (TSC), a disorder characterised by the development of hamartomas or benign tumours in various organs as well as the variable presence of epilepsy, intellectual disability (ID) and autism. TSC1, TSC2 and the recently described protein TBC1D7 form a complex that inhibits mTORC1 signalling and limits cell growth. Although it has been proposed that mutations in TBC1D7 might also cause TSC, loss of its function has not yet been documented in humans. METHODS AND RESULTS: We used homozygosity mapping and exome sequencing to study a consanguineous family with ID and megalencephaly but without any specific features of TSC. We identified only one rare coding variant, c.538delT:p.Y180fsX1 in TBC1D7, in the regions of homozygosity shared by the affected siblings. We show that this mutation abolishes TBC1D7 expression and is associated with increased mTORC1 signalling in cells of the affected individuals. CONCLUSIONS: Our study suggests that disruption of TBC1D7 causes ID but without the other typical features found in TSC. Although megalencephaly is not commonly observed in TSC, it has been associated with mTORC1 activation. Our observation thus reinforces the relationship between this pathway and the development of megalencephaly.


Assuntos
Proteínas de Transporte/genética , Deficiência Intelectual/genética , Megalencefalia/genética , Esclerose Tuberosa/genética , Criança , Pré-Escolar , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Mutação , Linhagem
3.
JTO Clin Res Rep ; 4(7): 100530, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37415647

RESUMO

Introduction: Translocations of the ROS1 gene were found to drive tumorigenesis in 1% to 2% of lung adenocarcinoma. In clinical practice, ROS1 rearrangements are often screened by immunohistochemistry (IHC) before confirmation with either fluorescence in situ hybridization or molecular techniques. This screening test leads to a non-negligible number of cases that have equivocal or positive ROS1 IHC, without ROS1 translocation. Methods: In this study, we have analyzed retrospectively 1021 cases of nonsquamous NSCLC having both ROS1 IHC and molecular analysis using next-generation sequencing. Results: ROS1 IHC was negative in 938 cases (91.9%), equivocal in 65 cases (6.4%), and positive in 18 cases (1.7%). Among these 83 equivocal or positive cases, only two were ROS1 rearranged, leading to a low predictive positive value of the IHC test (2%). ROS1-positive IHC was correlated with an increased mRNA ROS1 transcripts. Moreover, we have found a mean statistically significant relationship between ROS1 expression and EGFR gene mutations, suggesting a crosstalk mechanism between these oncogenic driver molecules. Conclusion: This study demonstrates that ROS1 IHC represents true ROS1 mRNA expression, and raises the question of a potential benefit of combined targeted therapy in EGFR-mutated NSCLC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA