Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 38(2): 35, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34989919

RESUMO

Aiming to broaden the base of knowledge about wild yeasts, four new indigenous strains were isolated from corn residues, and phylogenetic-tree assemblings on ITS and LSU regions indicated they belong to Meyerozyma caribbica. Yeasts were cultivated under full- and micro-aerobiosis, starting with low or high cell-density inoculum, in synthetic medium or corn hydrolysate containing glucose and/or xylose. Cells were able to assimilate both monosaccharides, albeit by different metabolic routes (fermentative or respiratory). They grew faster in glucose, with lag phases ~ 10 h shorter than in xylose. The hexose exhaustion occurred between 24 and 34 h, while xylose was entirely consumed in the last few hours of cultivation (44-48 h). In batch fermentation in synthetic medium with high cell density, under full-aerobiosis, 18-20 g glucose l-1 were exhausted in 4-6 h, with a production of 6.5-7.0 g ethanol l-1. In the xylose medium, cells needed > 12 h to consume the carbohydrate, and instead of ethanol, cells released 4.4-6.4 g l-1 xylitol. Under micro-aerobiosis, yeasts were unable to assimilate xylose, and glucose was more slowly consumed, although the ethanol yield was the theoretical maximum. When inoculated into the hydrolysate, cells needed 4-6 h to deplete glucose, and xylose had a maximum consumption of 57%. Considering that the hydrolysate contained ~ 3 g l-1 acetic acid, it probably has impaired sugar metabolism. Thus, this study increases the fund of knowledge regarding indigenous yeasts and reveals the biotechnological potential of these strains.


Assuntos
Glucose/metabolismo , Saccharomycetales/metabolismo , Xilose/metabolismo , Zea mays/microbiologia , Ácido Acético , Aerobiose , Biomassa , Meios de Cultura/química , Fermentação , Lignina , Filogenia , Saccharomycetales/classificação , Saccharomycetales/genética , Saccharomycetales/isolamento & purificação , Xilitol/biossíntese
2.
Food Chem ; 213: 425-430, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27451200

RESUMO

This work investigates the extraction process of safflower oil using pressurized ethanol, and compares the chemical composition obtained (in terms of fatty acids) with other extraction techniques. Soxhlet and Ultrasound showed maximum global yield of 36.53% and 30.41%, respectively (70°C and 240min). PLE presented maximum global yields of 25.62% (3mLmin(-1)), 19.94% (2mLmin(-1)) and 12.37% (1mLmin(-1)) at 40°C, 100bar and 60min. Palmitic acid showed the lower concentration in all experimental conditions (from 5.70% to 7.17%); Stearic and Linoleic acid presented intermediate concentrations (from 2.93% to 25.09% and 14.09% to 19.06%, respectively); Oleic acid showed higher composition (from 55.12% to 83.26%). Differences between percentages of fatty acids, depending on method were observed. Results may be applied to maximize global yields and select fatty acids, reducing the energetic costs and process time.


Assuntos
Extração Líquido-Líquido/métodos , Pressão , Óleo de Cártamo/análise , Óleo de Cártamo/química , Sementes/química , Ácidos Graxos/análise , Ácidos Graxos/química , Ácido Linoleico/análise , Ácido Linoleico/química , Ácido Palmítico/análise , Ácido Palmítico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA