Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nature ; 602(7896): 336-342, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110733

RESUMO

By catalysing the microbial formation of methane, methyl-coenzyme M reductase has a central role in the global levels of this greenhouse gas1,2. The activity of methyl-coenzyme M reductase is profoundly affected by several unique post-translational modifications3-6, such as  a unique C-methylation reaction catalysed by methanogenesis marker protein 10 (Mmp10), a radical S-adenosyl-L-methionine (SAM) enzyme7,8. Here we report the spectroscopic investigation and atomic resolution structure of Mmp10 from Methanosarcina acetivorans, a unique B12 (cobalamin)-dependent radical SAM enzyme9. The structure of Mmp10 reveals a unique enzyme architecture with four metallic centres and critical structural features involved in the control of catalysis. In addition, the structure of the enzyme-substrate complex offers a glimpse into a B12-dependent radical SAM enzyme in a precatalytic state. By combining electron paramagnetic resonance spectroscopy, structural biology and biochemistry, our study illuminates the mechanism by which the emerging superfamily of B12-dependent radical SAM enzymes catalyse chemically challenging alkylation reactions and identifies distinctive active site rearrangements to provide a structural rationale for the dual use of the SAM cofactor for radical and nucleophilic chemistry.


Assuntos
Proteínas Arqueais , Methanosarcina , S-Adenosilmetionina , Proteínas Arqueais/química , Espectroscopia de Ressonância de Spin Eletrônica , Methanosarcina/enzimologia , Metilação , Conformação Proteica , Processamento de Proteína Pós-Traducional , S-Adenosilmetionina/química , Vitamina B 12
2.
Nat Chem Biol ; 20(3): 382-391, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38158457

RESUMO

D-Amino acid residues, found in countless peptides and natural products including ribosomally synthesized and post-translationally modified peptides (RiPPs), are critical for the bioactivity of several antibiotics and toxins. Recently, radical S-adenosyl-L-methionine (SAM) enzymes have emerged as the only biocatalysts capable of installing direct and irreversible epimerization in RiPPs. However, the mechanism underpinning this biochemical process is ill-understood and the structural basis for this post-translational modification remains unknown. Here we report an atomic-resolution crystal structure of a RiPP-modifying radical SAM enzyme in complex with its substrate properly positioned in the active site. Crystallographic snapshots, size-exclusion chromatography-small-angle x-ray scattering, electron paramagnetic resonance spectroscopy and biochemical analyses reveal how epimerizations are installed in RiPPs and support an unprecedented enzyme mechanism for peptide epimerization. Collectively, our study brings unique perspectives on how radical SAM enzymes interact with RiPPs and catalyze post-translational modifications in natural products.


Assuntos
Produtos Biológicos , S-Adenosilmetionina , Aminoácidos , Antibacterianos , Peptídeos
3.
J Am Chem Soc ; 146(10): 6493-6505, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38426440

RESUMO

PylB is a radical S-adenosyl-l-methionine (SAM) enzyme predicted to convert l-lysine into (3R)-3-methyl-d-ornithine, a precursor in the biosynthesis of the 22nd proteogenic amino acid pyrrolysine. This protein highly resembles that of the radical SAM tyrosine and tryptophan lyases, which activate their substrate by abstracting a H atom from the amino-nitrogen position. Here, combining in vitro assays, analytical methods, electron paramagnetic resonance spectroscopy, and theoretical methods, we demonstrated that instead, PylB activates its substrate by abstracting a H atom from the Cγ position of l-lysine to afford the radical-based ß-scission. Strikingly, we also showed that PylB catalyzes the reverse reaction, converting (3R)-3-methyl-d-ornithine into l-lysine and using catalytic amounts of the 5'-deoxyadenosyl radical. Finally, we identified significant in vitro production of 5'-thioadenosine, an unexpected shunt product that we propose to result from the quenching of the 5'-deoxyadenosyl radical species by the nearby [Fe4S4] cluster.


Assuntos
Metionina , Ornitina/análogos & derivados , S-Adenosilmetionina , S-Adenosilmetionina/metabolismo , Lisina , Racemetionina , Espectroscopia de Ressonância de Spin Eletrônica
4.
Chemistry ; 28(31): e202200627, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35253932

RESUMO

B12 -dependent radical SAM enzymes are an emerging enzyme family with approximately 200,000 proteins. These enzymes have been shown to catalyze chemically challenging reactions such as methyl transfer to sp2- and sp3-hybridized carbon atoms. However, to date we have little information regarding their complex mechanisms and their biosynthetic potential. Here we show, using X-ray absorption spectroscopy, mutagenesis and synthetic probes that the vitamin B12 -dependent radical SAM enzyme TsrM catalyzes not only C- but also N-methyl transfer reactions further expanding its synthetic versatility. We also demonstrate that TsrM has the unique ability to directly transfer a methyl group to the benzyl core of tryptophan, including the least reactive position C4. Collectively, our study supports that TsrM catalyzes non-radical reactions and establishes the usefulness of radical SAM enzymes for novel biosynthetic schemes including serial alkylation reactions at particularly inert C-H bonds.


Assuntos
Metiltransferases , S-Adenosilmetionina , Metilação , Metiltransferases/metabolismo , S-Adenosilmetionina/química , Triptofano/química , Vitamina B 12/química
5.
J Biol Chem ; 295(49): 16665-16677, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-32972973

RESUMO

Despite its major importance in human health, the metabolic potential of the human gut microbiota is still poorly understood. We have recently shown that biosynthesis of Ruminococcin C (RumC), a novel ribosomally synthesized and posttranslationally modified peptide (RiPP) produced by the commensal bacterium Ruminococcus gnavus, requires two radical SAM enzymes (RumMC1 and RumMC2) catalyzing the formation of four Cα-thioether bridges. These bridges, which are essential for RumC's antibiotic properties against human pathogens such as Clostridium perfringens, define two hairpin domains giving this sactipeptide (sulfur-to-α-carbon thioether-containing peptide) an unusual architecture among natural products. We report here the biochemical and spectroscopic characterizations of RumMC2. EPR spectroscopy and mutagenesis data support that RumMC2 is a member of the large family of SPASM domain radical SAM enzymes characterized by the presence of three [4Fe-4S] clusters. We also demonstrate that this enzyme initiates its reaction by Cα H-atom abstraction and is able to catalyze the formation of nonnatural thioether bonds in engineered peptide substrates. Unexpectedly, our data support the formation of a ketoimine rather than an α,ß-dehydro-amino acid intermediate during Cα-thioether bridge LC-MS/MS fragmentation. Finally, we explored the roles of the leader peptide and of the RiPP precursor peptide recognition element, present in myriad RiPP-modifying enzymes. Collectively, our data support a more complex role for the peptide recognition element and the core peptide for the installation of posttranslational modifications in RiPPs than previously anticipated and suggest a possible reaction intermediate for thioether bond formation.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriocinas/metabolismo , Clostridiales/metabolismo , Microbiota , Sulfetos/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bacteriocinas/química , Bacteriocinas/genética , Biocatálise , Cromatografia Líquida de Alta Pressão , Humanos , Cinética , Família Multigênica , Mutagênese Sítio-Dirigida , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Motivo Estéril alfa , Especificidade por Substrato , Sulfetos/análise , Sulfetos/metabolismo , Espectrometria de Massas em Tandem
6.
J Biol Chem ; 294(40): 14512-14525, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31337708

RESUMO

The human microbiota plays a central role in human physiology. This complex ecosystem is a promising but untapped source of bioactive compounds and antibiotics that are critical for its homeostasis. However, we still have a very limited knowledge of its metabolic and biosynthetic capabilities. Here we investigated an enigmatic biosynthetic gene cluster identified previously in the human gut symbiont Ruminococcus gnavus This gene cluster which encodes notably for peptide precursors and putative radical SAM enzymes, has been proposed to be responsible for the biosynthesis of ruminococcin C (RumC), a ribosomally synthesized and posttranslationally modified peptide (RiPP) with potent activity against the human pathogen Clostridium perfringens By combining in vivo and in vitro approaches, including recombinant expression and purification of the respective peptides and proteins, enzymatic assays, and LC-MS analyses, we determined that RumC is a sulfur-to-α-carbon thioether-containing peptide (sactipeptide) with an unusual architecture. Moreover, our results support that formation of the thioether bridges follows a processive order, providing mechanistic insights into how radical SAM (AdoMet) enzymes install posttranslational modifications in RiPPs. We also found that the presence of thioether bridges and removal of the leader peptide are required for RumC's antimicrobial activity. In summary, our findings provide evidence that production of the anti-Clostridium peptide RumC depends on an R. gnavus operon encoding five potential RumC precursor peptides and two radical SAM enzymes, uncover key RumC structural features, and delineate the sequence of posttranslational modifications leading to its formation and antimicrobial activity.


Assuntos
Bacteriocinas/química , Clostridiales/genética , Clostridium perfringens/genética , Microbioma Gastrointestinal/genética , Peptídeos/genética , Sequência de Aminoácidos/genética , Bacteriocinas/biossíntese , Bacteriocinas/genética , Clostridiales/enzimologia , Clostridium perfringens/química , Clostridium perfringens/patogenicidade , Humanos , Família Multigênica/genética , Biossíntese Peptídica/genética , Peptídeos/química , Processamento de Proteína Pós-Traducional/genética , Ribossomos/genética , Motivo Estéril alfa/genética , Sulfetos/química , Simbiose/genética
7.
J Biol Chem ; 292(26): 10835-10844, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28476884

RESUMO

Radical S-adenosylmethionine (SAM) enzymes are emerging as a major superfamily of biological catalysts involved in the biosynthesis of the broad family of bioactive peptides called ribosomally synthesized and post-translationally modified peptides (RiPPs). These enzymes have been shown to catalyze unconventional reactions, such as methyl transfer to electrophilic carbon atoms, sulfur to Cα atom thioether bonds, or carbon-carbon bond formation. Recently, a novel radical SAM enzyme catalyzing the formation of a lysine-tryptophan bond has been identified in Streptococcus thermophilus, and a reaction mechanism has been proposed. By combining site-directed mutagenesis, biochemical assays, and spectroscopic analyses, we show here that this enzyme, belonging to the emerging family of SPASM domain radical SAM enzymes, likely contains three [4Fe-4S] clusters. Notably, our data support that the seven conserved cysteine residues, present within the SPASM domain, are critical for enzyme activity. In addition, we uncovered the minimum substrate requirements and demonstrate that KW cyclic peptides are more widespread than anticipated, notably in pathogenic bacteria. Finally, we show a strict specificity of the enzyme for lysine and tryptophan residues and the dependence of an eight-amino acid leader peptide for activity. Altogether, our study suggests novel mechanistic links among SPASM domain radical SAM enzymes and supports the involvement of non-cysteinyl ligands in the coordination of auxiliary clusters.


Assuntos
Proteínas de Bactérias/química , Proteínas Ferro-Enxofre/química , Streptococcus thermophilus/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Lisina/química , Lisina/metabolismo , Domínios Proteicos , Streptococcus thermophilus/genética , Triptofano/química , Triptofano/metabolismo
8.
J Am Chem Soc ; 140(7): 2469-2477, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29253341

RESUMO

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a growing family of bioactive peptides. Among RiPPs, the bacterial toxin polytheonamide A is characterized by a unique set of post-translational modifications catalyzed by novel radical S-adenosyl-l-methionine (SAM) enzymes. Here we show that the radical SAM enzyme PoyD catalyzes in vitro polytheonamide epimerization in a C-to-N directional manner. By combining mutagenesis experiments with labeling studies and investigating the enzyme substrate promiscuity, we deciphered in detail the mechanism of PoyD. We notably identified a critical cysteine residue as a likely key H atom donor and demonstrated that PoyD belongs to a distinct family of radical SAM peptidyl epimerases. In addition, our study shows that the core peptide directly influences the epimerization pattern allowing for production of peptides with unnatural epimerization patterns.

9.
J Am Chem Soc ; 138(48): 15515-15518, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27934015

RESUMO

Genomic and metagenomic investigations have recently led to the delineation of a novel class of natural products called ribosomally synthesized and post-translationally modified peptides (RiPPs). RiPPs are ubiquitous among living organisms and include pharmaceutically relevant compounds such as antibiotics and toxins. A prominent example is polytheonamide A, which exhibits numerous post-translational modifications, some of which were unknown in ribosomal peptides until recently. Among these post-translational modifications, C-methylations have been proposed to be catalyzed by two putative radical S-adenosylmethionine (rSAM) enzymes, PoyB and PoyC. Here we report the in vitro activity of PoyC, the first B12-dependent rSAM enzyme catalyzing peptide Cß-methylation. We show that PoyC catalyzes the formation of S-adenosylhomocysteine and 5'-deoxyadenosine and the transfer of a methyl group to l-valine residue. In addition, we demonstrate for the first time that B12-rSAM enzymes have a tightly bound MeCbl cofactor that during catalysis transfers a methyl group originating from S-adenosyl-l-methionine. Collectively, our results shed new light on polytheonamide biosynthesis and the large and emerging family of B12-rSAM enzymes.


Assuntos
Biocatálise , Metiltransferases/metabolismo , Proteínas/metabolismo , S-Adenosilmetionina/metabolismo , Vitamina B 12/metabolismo , Radicais Livres/química , Radicais Livres/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Metilação , Metiltransferases/química , Conformação Molecular , Proteínas/química , S-Adenosilmetionina/química , Vitamina B 12/química
10.
Biochem Soc Trans ; 44(1): 109-15, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26862195

RESUMO

Humans live in a permanent association with bacterial populations collectively called the microbiota. In the last 10 years, major advances in our knowledge of the microbiota have shed light on its critical roles in human physiology. The microbiota has also been shown to be a major factor in numerous pathologies including obesity or inflammatory disorders. Despite tremendous progresses, our understanding of the key functions of the human microbiota and the molecular basis of its interactions with the host remain still poorly understood. Among the factors involved in host colonization, two enzymes families, sulfatases and radical S-adenosyl-L-methionine enzymes, have recently emerged as key enzymes.


Assuntos
Glicosaminoglicanos/metabolismo , Microbiota , S-Adenosilmetionina/metabolismo , Sulfatases/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Especificidade por Substrato
11.
J Biol Chem ; 289(35): 24289-303, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25002587

RESUMO

Despite the importance of the microbiota in human physiology, the molecular bases that govern the interactions between these commensal bacteria and their host remain poorly understood. We recently reported that sulfatases play a key role in the adaptation of a major human commensal bacterium, Bacteroides thetaiotaomicron, to its host (Benjdia, A., Martens, E. C., Gordon, J. I., and Berteau, O. (2011) J. Biol. Chem. 286, 25973-25982). We hypothesized that sulfatases are instrumental for this bacterium, and related Bacteroides species, to metabolize highly sulfated glycans (i.e. mucins and glycosaminoglycans (GAGs)) and to colonize the intestinal mucosal layer. Based on our previous study, we investigated 10 sulfatase genes induced in the presence of host glycans. Biochemical characterization of these potential sulfatases allowed the identification of GAG-specific sulfatases selective for the type of saccharide residue and the attachment position of the sulfate group. Although some GAG-specific bacterial sulfatase activities have been described in the literature, we report here for the first time the identity and the biochemical characterization of four GAG-specific sulfatases. Furthermore, contrary to the current paradigm, we discovered that B. thetaiotaomicron possesses an authentic GAG endosulfatase that is active at the polymer level. This type of sulfatase is the first one to be identified in a bacterium. Our study thus demonstrates that bacteria have evolved more sophisticated and diverse GAG sulfatases than anticipated and establishes how B. thetaiotaomicron, and other major human commensal bacteria, can metabolize and potentially tailor complex host glycans.


Assuntos
Bacteroides/enzimologia , Glicosaminoglicanos/metabolismo , Sulfatases/metabolismo , Simbiose , Sequência de Bases , Sequência de Carboidratos , Primers do DNA , Glicosaminoglicanos/química , Humanos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular
12.
Nat Chem Biol ; 8(12): 957-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23064318

RESUMO

Methylation is among the most widespread chemical modifications encountered in biomolecules and has a pivotal role in many major biological processes. In the biosynthetic pathway of the antibiotic thiostrepton A, we identified what is to our knowledge the first tryptophan methyltransferase. We show that it uses unprecedented chemistry to methylate inactivated sp(2)-hybridized carbon atoms, despite being predicted to be a radical SAM enzyme.


Assuntos
Metiltransferases/metabolismo , S-Adenosilmetionina/metabolismo , Tioestreptona/metabolismo , Clonagem Molecular , Ditionita/farmacologia , Ditiotreitol/farmacologia , Escherichia coli/metabolismo , Proteínas Recombinantes/biossíntese , S-Adenosilmetionina/farmacologia , Espectrofotometria Ultravioleta , Reagentes de Sulfidrila/farmacologia , Triptofano/metabolismo , Vitamina B 12/análogos & derivados , Vitamina B 12/metabolismo
13.
Nucleic Acids Res ; 40(18): 9308-18, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22761404

RESUMO

Bacterial spores possess an enormous resistance to ultraviolet (UV) radiation. This is largely due to a unique DNA repair enzyme, Spore Photoproduct Lyase (SP lyase) that repairs a specific UV-induced DNA lesion, the spore photoproduct (SP), through an unprecedented radical-based mechanism. Unlike DNA photolyases, SP lyase belongs to the emerging superfamily of radical S-adenosyl-l-methionine (SAM) enzymes and uses a [4Fe-4S](1+) cluster and SAM to initiate the repair reaction. We report here the first crystal structure of this enigmatic enzyme in complex with its [4Fe-4S] cluster and its SAM cofactor, in the absence and presence of a DNA lesion, the dinucleoside SP. The high resolution structures provide fundamental insights into the active site, the DNA lesion recognition and binding which involve a ß-hairpin structure. We show that SAM and a conserved cysteine residue are perfectly positioned in the active site for hydrogen atom abstraction from the dihydrothymine residue of the lesion and donation to the α-thyminyl radical moiety, respectively. Based on structural and biochemical characterizations of mutant proteins, we substantiate the role of this cysteine in the enzymatic mechanism. Our structure reveals how SP lyase combines specific features of radical SAM and DNA repair enzymes to enable a complex radical-based repair reaction to take place.


Assuntos
Enzimas Reparadoras do DNA/química , Reparo do DNA , Proteínas/química , S-Adenosilmetionina/química , Sítios de Ligação , Domínio Catalítico , DNA/química , DNA/metabolismo , Dano ao DNA , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Geobacillus/enzimologia , Modelos Moleculares , Mutação , Ligação Proteica , Proteínas/genética , Proteínas/metabolismo , Raios Ultravioleta
14.
Biochemistry ; 52(18): 3041-50, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23607538

RESUMO

Spore photoproduct lyase (SPL) repairs a covalent UV-induced thymine dimer, spore photoproduct (SP), in germinating endospores and is responsible for the strong UV resistance of endospores. SPL is a radical S-adenosyl-l-methionine (SAM) enzyme, which uses a [4Fe-4S](+) cluster to reduce SAM, generating a catalytic 5'-deoxyadenosyl radical (5'-dA(•)). This in turn abstracts a H atom from SP, generating an SP radical that undergoes ß scission to form a repaired 5'-thymine and a 3'-thymine allylic radical. Recent biochemical and structural data suggest that a conserved cysteine donates a H atom to the thymine radical, resulting in a putative thiyl radical. Here we present structural and biochemical data that suggest that two conserved tyrosines are also critical in enzyme catalysis. One [Y99(Bs) in Bacillus subtilis SPL] is downstream of the cysteine, suggesting that SPL uses a novel hydrogen atom transfer (HAT) pathway with a pair of cysteine and tyrosine residues to regenerate SAM. The other tyrosine [Y97(Bs)] has a structural role to facilitate SAM binding; it may also contribute to the SAM regeneration process by interacting with the putative (•)Y99(Bs) and/or 5'-dA(•) intermediates to lower the energy barrier for the second H abstraction step. Our results indicate that SPL is the first member of the radical SAM superfamily (comprising more than 44000 members) to bear a catalytically operating HAT chain.


Assuntos
Proteínas/metabolismo , Catálise , Cromatografia Líquida de Alta Pressão , Cristalização , Cinética , Modelos Moleculares , Mutação , Proteínas/química , Proteínas/genética , S-Adenosilmetionina/metabolismo
15.
Proc Natl Acad Sci U S A ; 107(7): 2740-5, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20133613

RESUMO

We report a catalytically promiscuous enzyme able to efficiently promote the hydrolysis of six different substrate classes. Originally assigned as a phosphonate monoester hydrolase (PMH) this enzyme exhibits substantial second-order rate accelerations ((k(cat)/K(M))/k(w)), ranging from 10(7) to as high as 10(19), for the hydrolyses of phosphate mono-, di-, and triesters, phosphonate monoesters, sulfate monoesters, and sulfonate monoesters. This substrate collection encompasses a range of substrate charges between 0 and -2, transition states of a different nature, and involves attack at two different reaction centers (P and S). Intrinsic reactivities (half-lives) range from 200 days to 10(5) years under near neutrality. The substantial rate accelerations for a set of relatively difficult reactions suggest that efficient catalysis is not necessarily limited to efficient stabilization of just one transition state. The crystal structure of PMH identifies it as a member of the alkaline phosphatase superfamily. PMH encompasses four of the native activities previously observed in this superfamily and extends its repertoire by two further activities, one of which, sulfonate monoesterase, has not been observed previously for a natural enzyme. PMH is thus one of the most promiscuous hydrolases described to date. The functional links between superfamily activities can be presumed to have played a role in functional evolution by gene duplication.


Assuntos
Fosfatase Alcalina/química , Burkholderia/enzimologia , Evolução Molecular , Hidrolases/química , Modelos Moleculares , Conformação Proteica , Fosfatase Alcalina/isolamento & purificação , Catálise , Domínio Catalítico/genética , Cromatografia em Gel , Concentração de Íons de Hidrogênio , Hidrolases/isolamento & purificação , Estrutura Molecular , Mutação/genética , Especificidade por Substrato
16.
Curr Opin Struct Biol ; 83: 102725, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37931378

RESUMO

In the last decade, B12-dependent radical SAM enzymes have emerged as central biocatalysts in the biosynthesis of a myriad of natural products. Notably, these enzymes have been shown to catalyze carbon-carbon bond formation on unactivated carbon atoms leading to unusual methylations. Recently, structural studies have revealed unprecedented insights into the complex chemistry catalyzed by these enzymes. In this review, we cover recent advances in our understanding of B12-dependent radical SAM enzymes from a mechanistic and structural perspective. We discuss the unanticipated diversity of these enzymes which suggests evolutionary links between various biosynthetic and metabolic pathways from antibiotic to RiPP and methane biosynthesis.


Assuntos
Carbono , S-Adenosilmetionina , Metilação , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Enzimas/metabolismo
17.
J Biol Chem ; 286(29): 25973-82, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21507958

RESUMO

The large-scale application of genomic and metagenomic sequencing technologies has yielded a number of insights about the metabolic potential of symbiotic human gut microbes. Nevertheless, the molecular basis of the interactions between commensal bacteria and their host remained to be investigated. Bacteria colonizing the mucosal layer that overlies the gut epithelium are exposed to highly sulfated glycans (i.e. mucin and glycosaminoglycans). These polymers can serve as potential nutrient sources, but their high sulfate content usually prevents their degradation. Commensal bacteria such as Bacteroides thetaiotaomicron possess more predicted sulfatase genes than in the human genome, the physiological functions of which are largely unknown. To be active, sulfatases must undergo a critical post-translational modification catalyzed in anaerobic bacteria by the radical AdoMet enzyme anaerobic sulfatase-maturating enzyme (anSME). In the present study, we have tested the role of this pathway in Bacteroides thetaiotaomicron which, in addition to 28 predicted sulfatases, possesses a single predicted anSME. In vitro studies revealed that deletion of the gene encoding its anSME (BT0238) results in loss of sulfatase activity and impaired ability to use sulfated polysaccharides as carbon sources. Co-colonization of formerly germ-free mice with both isogenic strains (i.e. wild-type or ΔanSME), or invasion experiments involving introduction of one followed by the other strain established that anSME activity and the sulfatases activated via this pathway, are important fitness factors for B. thetaiotaomicron, especially when mice are fed a simple sugar diet that requires this saccharolytic bacterium to adaptively forage on host glycans as nutrients. Whole genome transcriptional profiling of wild-type and the anSME mutant in vivo revealed that loss of this enzyme alters expression of genes involved in mucin utilization and that this disrupted ability to access mucosal glycans likely underlies the observed pronounced colonization defect. Comparative genomic analysis reveals that 100% of 46 fully sequenced human gut Bacteroidetes contain homologs of BT0238 and genes encoding sulfatases, suggesting that this is an important and evolutionarily conserved feature for bacterial adaptation to life in this habitat.


Assuntos
Bacteroides/enzimologia , Bacteroides/fisiologia , Trato Gastrointestinal/microbiologia , S-Adenosilmetionina/metabolismo , Sulfatases/metabolismo , Simbiose , Animais , Bacteroides/genética , Bacteroides/crescimento & desenvolvimento , Ceco/microbiologia , Dieta , Perfilação da Expressão Gênica , Genoma Bacteriano/genética , Genômica , Vida Livre de Germes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucosa/microbiologia , Mutação , Polissacarídeos/metabolismo , Sulfatases/deficiência
18.
J Am Chem Soc ; 134(44): 18173-6, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23072415

RESUMO

Cofactors play key roles in metabolic pathways. Among them F(420) has proved to be a very attractive target for the selective inhibition of archaea and actinobacteria. Its biosynthesis, in a unique manner, involves a key enzyme, F(0)-synthase. This enzyme is a large monomer in actinobacteria, while it is constituted of two subunits in archaea and cyanobacteria. We report here the purification of both types of F(0)-synthase and their in vitro activities. Our study allows us to establish that F(0)-synthase, from both types, uses 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione and tyrosine as substrates but not 4-hydroxylphenylpyruvate as previously suggested. Furthermore, our data support the fact that F(0)-synthase generates two 5'-deoxyadenosyl radicals for catalysis which is unprecedented in reaction catalyzed by radical SAM enzymes.


Assuntos
Actinomycetales/enzimologia , Mathanococcus/enzimologia , Nostoc/enzimologia , Riboflavina Sintase/metabolismo , Riboflavina/análogos & derivados , Tirosina/metabolismo , Actinomycetales/química , Actinomycetales/metabolismo , Mathanococcus/química , Mathanococcus/metabolismo , Nostoc/química , Nostoc/metabolismo , Estrutura Terciária de Proteína , Riboflavina/química , Riboflavina/metabolismo , Riboflavina Sintase/química , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo
19.
Front Chem ; 9: 678068, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34350157

RESUMO

To face the current antibiotic resistance crisis, novel strategies are urgently required. Indeed, in the last 30 years, despite considerable efforts involving notably high-throughput screening and combinatorial libraries, only few antibiotics have been launched to the market. Natural products have markedly contributed to the discovery of novel antibiotics, chemistry and drug leads, with more than half anti-infective and anticancer drugs approved by the FDA being of natural origin or inspired by natural products. Among them, thanks to their modular structure and simple biosynthetic logic, ribosomally synthesized and posttranslationally modified peptides (RiPPs) are promising scaffolds. In addition, recent studies have highlighted the pivotal role of RiPPs in the human microbiota which remains an untapped source of natural products. In this review, we report on recent developments in radical SAM enzymology and how these unique biocatalysts have been shown to install complex and sometimes unprecedented posttranslational modifications in RiPPs with a special focus on microbiome derived enzymes.

20.
Microb Physiol ; 31(3): 306-318, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34120110

RESUMO

The epeXEPAB (formerly yydFGHIJ) locus of Bacillus subtilis encodes a minimalistic biosynthetic pathway for a linear antimicrobial epipeptide, EpeX, which is ribosomally produced and post-translationally processed by the action of the radical-SAM epimerase, EpeE, and a membrane-anchored signal 2 peptide peptidase, EpeP. The ABC transporter EpeAB provides intrinsic immunity against self-produced EpeX, without conferring resistance against extrinsically added EpeX. EpeX specifically targets, and severely perturbs the integrity of the cytoplasmic membrane, which leads to the induction of the Lia-dependent envelope stress response. Here, we provide new insights into the distribution, expression, and regulation of the minimalistic epeXEPAB locus of B. subtilis, as well as the biosynthesis and biological efficiency of the produced epipeptide EpeX*. A comprehensive comparative genomics study demonstrates that the epe-locus is restricted to but widely distributed within the phylum Firmicutes. The gene products of epeXEP are necessary and sufficient for the production of the mature antimicrobial peptide EpeX*. In B. subtilis, the epeXEPAB locus is transcribed from three different promoters, one upstream of epeX (PepeX) and two within epeP (PepeA1 and PepeA2). While the latter two are mostly constitutive, PepeX shows a growth phase-dependent induction at the onset of stationary phase. We demonstrate that this regulation is the result of the antagonistic action of two global regulators: The transition state regulator AbrB keeps the epe locus shut off during exponential growth by direct binding. This tight repression is relieved by the master regulator of sporulation, Spo0A, which counteracts the AbrB-dependent repression of epeXEPAB expression during the transition to stationary phase. The net result of these three -promoters is an expression pattern that ensures EpeAB-dependent autoimmunity prior to EpeX* production. In the absence of EpeAB, the general envelope stress response proteins LiaIH can compensate for the loss of specific autoimmunity by providing sufficient protection against the membrane-perturbating action of EpeX*. Hence, the transcriptional regulation of epe expression and the resulting intrinsic induction of the two corresponding resistance functions, encoded by epeAB and liaIH, are well balanced to provide a need-based immunity against mature EpeX*.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Membrana Celular/metabolismo , Firmicutes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA