Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 27(17): 4110-4124, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33993588

RESUMO

Although there is abundant evidence that plant phenology is shifting with climatic warming, the magnitude and direction of these shifts can depend on the environmental context, plant species, and even the specific phenophase of study. These disparities have resulted in difficulties predicting future phenological shifts, detecting phenological mismatches and identifying other ecological consequences. Experimental warming studies are uniquely poised to help us understand how climate warming will impact plant phenology, and meta-analyses allow us to expose broader trends from individual studies. Here, we review 70 studies comprised 1226 observations of plant phenology under experimental warming. We find that plants are advancing their early-season phenophases (bud break, leaf-out, and flowering) in response to warming while marginally delaying their late-season phenophases (leaf coloration, leaf fall, and senescence). We find consistency in the magnitude of phenological shifts across latitude, elevation, and habitat types, whereas the effect of warming on nonnative annual plants is two times larger than the effect of warming on native perennial plants. Encouragingly for researchers, plant phenological responses were generally consistent across a variety of experimental warming methods. However, we found numerous gaps in the experimental warming literature, limiting our ability to predict the effects of warming on phenological shifts. In particular, studies outside of temperate ecosystems in the Northern Hemisphere, or those that focused on late-season phenophases, annual plants, nonnative plants, or woody plants and grasses, were underrepresented in our data set. Future experimental warming studies could further refine our understanding of phenological responses to warming by setting up experiments outside of traditionally studied biogeographic zones and measuring multiple plant phenophases (especially late-season phenophases) across species of varying origin, growth form, and life cycle.


Assuntos
Mudança Climática , Ecossistema , Plantas , Estações do Ano , Temperatura
2.
Ecol Evol ; 13(12): e10775, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38089900

RESUMO

The expansion of woody species from their historical ranges into grasslands is a global problem. Understanding the mechanisms that enable species to successfully establish and then re-encroach following their removal is critical to effectively managing problem species. Legacy effects are a mechanism that could be critical to the reestablishment of woody encroachers following their removal. Legacy effects occur when a species alters the biotic and abiotic environment in a way that affects communities that establish subsequently. In this study, we assess whether the eastern redcedar (Juniperus virginiana), a North American woody encroacher, generates legacy effects that affect communities that establish following removal of this species from an experimental grass community. We conducted a series of experiments to evaluate the effects of J. virginiana, roots on the germination and growth of grasses and to determine if the effects of root-addition treatments were derived from a microbial or allelopathic origin. Aqueous extracts of J. virginiana roots were found to inhibit the germination of grasses. We found escalating suppression of overall community biomass and the biomass of each individual species with increasing root treatments. Finally, we determined the origin of the observed suppressive effect is unlikely to be of microbial origin. Synthesis: Our results suggest that J. virginiana exudes an allelochemical into soils that inhibits the growth of certain grasses and thus has the potential to have legacy effects on future occupants. We suggest that the inhibition of the development of grasses in areas where J. virginiana has been removed is a mechanism that may favor the reestablishment of J. virginiana. Our results indicate the legacy effects of J. virginiana must be considered when conducting removal and restoration of J. virginiana infested lands.

3.
Ecol Evol ; 12(10): e9400, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36311395

RESUMO

The encroachment of woody plants into grasslands is an ongoing global problem that is largely attributed to anthropogenic factors such as climate change and land management practices. Determining the mechanisms that drive successful encroachment is a critical step towards planning restoration and long-term management strategies. Feedbacks between soil and aboveground communities can have a large influence on the fitness of plants and must be considered as potentially important drivers for woody encroachment. We conducted a plant-soil feedback experiment in a greenhouse between eastern redcedar Juniperus virginiana and four common North American prairie grass species. We assessed how soils that had been occupied by redcedar, a pervasive woody encroacher in the Great Plains of North America, affected the growth of Andropogon gerardi, Schizachyrium scoparium, Bromus inermis, and Pascopyrum smithii over time. We evaluated the effect of redcedar on grass performance by comparing the height and biomass of individuals that were grown in live or sterilized conspecific or redcedar soil. We found redcedar created a negative plant-soil feedback that limited the growth of the cool season grasses B. inermis and P. smithii, reducing their overall biomass by >60%. These effects were found in both live and sterilized redcedar soils. In live soils, some growth suppression can be attributed to the negative effects of soil microbes. The limitation of grass growth in sterile soils indicates redcedar may exude an allelochemical into the soil that limits grass growth. Our results demonstrate that plant-soil feedback created by redcedar inhibits the growth of certain grass species. By creating a plant-plant interaction that negatively affects competitors, redcedars increase the probability of seedling survival until they can grow to overtop their neighbors. These results indicate plant-soil feedback is a mechanism of native woody plant encroachment which could be important in many systems yet is understudied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA