Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Blood ; 143(1): 79-91, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37801721

RESUMO

ABSTRACT: Transfusion-related acute lung injury (TRALI) is one of the leading causes of transfusion-related fatalities and, to date, is without available therapies. Here, we investigated the role of the complement system in TRALI. Murine anti-major histocompatibility complex class I antibodies were used in TRALI mouse models, in combination with analyses of plasma samples from patients with TRALI. We found that in vitro complement activation was related to in vivo antibody-mediated TRALI induction, which was correlated with increased macrophage trafficking from the lungs to the blood in a fragment crystallizable region (Fc)-dependent manner and that this was dependent on C5. Human immunoglobulin G 1 variants of the murine TRALI-inducing antibody 34-1-2S, either unable to activate complement and/or bind to Fcγ receptors (FcγRs), revealed an essential role for the complement system, but not for FcγRs, in the onset of 34-1-2S-mediated TRALI in mice. In addition, we found high levels of complement activation in the plasma of patients with TRALI (n = 53), which correlated with elevated neutrophil extracellular trap (NET) markers. In vitro we found that NETs could be formed in a murine, 2-hit model, mimicking TRALI with lipopolysaccharide and C5a stimulation. Collectively, this reveals a critical role of Fc-mediated complement activation in TRALI, with a direct relation to macrophage trafficking from the lungs to the blood and an association with NET formation, suggesting that targeting the complement system may be an attractive therapeutic approach for combating TRALI.


Assuntos
Armadilhas Extracelulares , Lesão Pulmonar Aguda Relacionada à Transfusão , Humanos , Camundongos , Animais , Pulmão , Anticorpos , Macrófagos , Ativação do Complemento , Proteínas do Sistema Complemento
2.
J Immunol ; 210(2): 158-167, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36480251

RESUMO

Abs can be glycosylated in both their Fc and Fab regions with marked effects on Ab function and binding. High levels of IgG Fab glycosylation are associated with malignant and autoimmune conditions, exemplified by rheumatoid arthritis and highly Fab-glycosylated (∼90%) anti-citrullinated protein Abs (ACPAs). Important properties of IgG, such as long half-life and placental transport, are facilitated by the human neonatal Fc receptor (hFcRn). Although it is known that glycosylation of Abs can affect binding to Fc receptors, little is known on the impact of IgG Fab glycosylation on hFcRn binding and transplacental transport. Therefore, we analyzed the interaction between hFcRn and IgG with and without Fab glycans in vitro with various methods as well as in vivo by studying placental transfer of Fab-glycosylated Abs from mothers to newborns. No effect of Fab glycosylation on IgG binding to hFcRn was found by surface plasmon resonance and hFcRn affinity chromatography. In contrast, studies in a cell membrane context revealed that Fab glycans negatively impacted IgG-hFcRn interaction. In line with this, we found that Fab-glycosylated IgGs were transported ∼20% less efficiently across the placenta. This appeared to be a general phenomenon, observed for ACPAs, non-ACPAs, as well as total IgG in rheumatoid arthritis patients and healthy controls. Our results suggest that, in a cellular context, Fab glycans inhibit IgG-hFcRn interaction and thus negatively affect the transplacental transfer of IgG. As Fab-glycosylated Abs are frequently associated with autoimmune and malignant disorders and may be potentially harmful, this might encompass a regulatory mechanism, limiting the half-life and transport of such Abs.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Gravidez , Humanos , Feminino , Recém-Nascido , Placenta , Receptores Fc/metabolismo , Imunoglobulina G , Antígenos de Histocompatibilidade Classe I , Polissacarídeos
3.
J Immunol ; 209(6): 1146-1155, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36002230

RESUMO

IgG molecules are crucial for the human immune response against bacterial infections. IgGs can trigger phagocytosis by innate immune cells, like neutrophils. To do so, IgGs should bind to the bacterial surface via their variable Fab regions and interact with Fcγ receptors and complement C1 via the constant Fc domain. C1 binding to IgG-labeled bacteria activates the complement cascade, which results in bacterial decoration with C3-derived molecules that are recognized by complement receptors on neutrophils. Next to FcγRs and complement receptors on the membrane, neutrophils also express the intracellular neonatal Fc receptor (FcRn). We previously reported that staphylococcal protein A (SpA), a key immune-evasion protein of Staphylococcus aureus, potently blocks IgG-mediated complement activation and killing of S. aureus by interfering with IgG hexamer formation. SpA is also known to block IgG-mediated phagocytosis in absence of complement, but the mechanism behind it remains unclear. In this study, we demonstrate that SpA blocks IgG-mediated phagocytosis and killing of S. aureus and that it inhibits the interaction of IgGs with FcγRs (FcγRIIa and FcγRIIIb, but not FcγRI) and FcRn. Furthermore, our data show that multiple SpA domains are needed to effectively block IgG1-mediated phagocytosis. This provides a rationale for the fact that SpA from S. aureus contains four to five repeats. Taken together, our study elucidates the molecular mechanism by which SpA blocks IgG-mediated phagocytosis and supports the idea that in addition to FcγRs, the intracellular FcRn is also prevented from binding IgG by SpA.


Assuntos
Imunoglobulina G , Fagocitose , Receptores de IgG , Proteína Estafilocócica A , Staphylococcus aureus , Complemento C1 , Humanos , Imunoglobulina G/imunologia , Receptores de Complemento , Receptores de IgG/metabolismo , Proteína Estafilocócica A/metabolismo
4.
Platelets ; 34(1): 2129604, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36185007

RESUMO

Immune-mediated platelet refractoriness (PR) remains a significant problem in the setting of platelet transfusion and is predominantly caused by the presence of alloantibodies directed against class I human leukocyte antigens (HLA). Opsonization of donor platelets with these alloantibodies can result in rapid clearance after transfusion via multiple mechanisms, including antibody dependent cellular phagocytosis (ADCP). Interestingly, not all alloimmunized patients develop PR to unmatched platelet transfusions, suggesting variation in HLA-specific IgG responses between patients. Previously, we observed that the glycosylation profile of anti-HLA antibodies was highly variable between PR patients, especially with respect to Fc galactosylation, sialylation and fucosylation. In the current study, we investigated the effect of different Fc glycosylation patterns, with known effects on complement deposition and FcγR binding, on phagocytosis of opsonized platelets by monocyte-derived human macrophages. We found that the phagocytosis of antibody- and complement-opsonized platelets, by monocyte derived M1 macrophages, was unaffected by these qualitative IgG-glycan differences.


Assuntos
Isoanticorpos , Transfusão de Plaquetas , Humanos , Plaquetas/metabolismo , Fagocitose , Macrófagos , Imunoglobulina G , Proteínas do Sistema Complemento/metabolismo , Antígenos HLA
5.
Haematologica ; 107(10): 2432-2444, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35354253

RESUMO

Approximately 20% of patients receiving multiple platelet transfusions develop platelet alloantibodies, which can be directed against human leukocyte antigens (HLA) and, to a lesser extent, against human platelet antigens (HPA). These antibodies can lead to the rapid clearance of donor platelets, presumably through IgG-Fc receptor (FcγR)-mediated phagocytosis or via complement activation, resulting in platelet refractoriness. Strikingly, not all patients with anti-HLA or -HPA antibodies develop platelet refractoriness upon unmatched platelet transfusions. Previously, we found that IgG Fc glycosylation of anti-HLA antibodies was highly variable between patients with platelet refractoriness, especially with respect to galactosylation and sialylation of the Fc-bound sugar moiety. Here, we produced recombinant glycoengineered anti-HLA and anti- HPA-1a monoclonal antibodies with varying Fc galactosylation and sialylation levels and studied their ability to activate the classical complement pathway. We observed that anti-HLA monoclonal antibodies with different specificities, binding simultaneously to the same HLA-molecules, or anti-HLA in combination with anti-HPA-1a monoclonal antibodies interacted synergistically with C1q, the first component of the classical pathway. Elevated Fc galactosylation and, to a lesser extent, sialylation significantly increased the complement-activating properties of anti-HLA and anti-HPA-1a monoclonal antibodies. We propose that both the breadth of the polyclonal immune response, with recognition of different HLA epitopes and in some cases HPA antigens, and the type of Fc glycosylation can provide an optimal stoichiometry for C1q binding and subsequent complement activation. These factors can shift the effect of a platelet alloimmune response to a clinically relevant response, leading to complement-mediated clearance of donor platelets, as observed in platelet refractoriness.


Assuntos
Antígenos de Plaquetas Humanas , Trombocitopenia , Anticorpos Monoclonais/farmacologia , Antígenos de Plaquetas Humanas/metabolismo , Plaquetas/metabolismo , Complemento C1q , Via Clássica do Complemento , Proteínas do Sistema Complemento/metabolismo , Epitopos , Antígenos HLA , Humanos , Imunoglobulina G/metabolismo , Isoanticorpos , Receptores de IgG/metabolismo , Açúcares/metabolismo , Trombocitopenia/metabolismo
6.
J Immunol ; 205(12): 3456-3467, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33188070

RESUMO

Abs of the IgG isotype mediate effector functions like Ab-dependent cellular cytotoxicity and Ab-dependent cellular phagocytosis by Fc interactions with FcγRs and complement-dependent cytotoxicity upon IgG-Fc binding to C1q. In this study, we describe the crucial role of the highly conserved dual glycines at position 236-237 in the lower hinge region of human IgG, including the lack of one glycine as found in IgG2. We found several permutations in this region that either silence or largely abrogate FcγR binding and downstream FcγR effector functions, as demonstrated by surface plasmon resonance, Ab-dependent cellular phagocytosis, and Ab-dependent cellular cytotoxicity assays. Although the binding regions of FcγRs and C1q on the IgG-Fc largely overlap, IgG1 with a deletion of G236 only silences FcγR-mediated effector functions without affecting C1q-binding or activation. Several mutations resulted in only residual FcγRI binding with differing affinities that are either complement competent or silenced. Interestingly, we also found that IgG2, naturally only binding FcγRIIa, gains binding to FcγRI and FcγRIIIa after insertion of G236, highlighting the crucial importance of G236 in IgG for FcγR interaction. These mutants may become invaluable tools for FcγR-related research as well as for therapeutic purposes in which only complement-mediated functions are required without the involvement of FcγR.


Assuntos
Sequência de Aminoácidos , Ativação do Complemento , Complemento C1q , Imunoglobulina G , Receptores de IgG , Deleção de Sequência , Ressonância de Plasmônio de Superfície , Complemento C1q/química , Complemento C1q/genética , Complemento C1q/imunologia , Glicina/química , Glicina/genética , Glicina/imunologia , Células HEK293 , Humanos , Imunoglobulina G/química , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Receptores de IgG/química , Receptores de IgG/genética , Receptores de IgG/imunologia
7.
Int J Cancer ; 144(2): 345-354, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30259976

RESUMO

Immunomodulatory antibodies blocking interactions of coinhibitory receptors to their ligands such as CTLA-4, PD1 and PD-L1 on immune cells have shown impressive therapeutic efficacy in clinical studies. The therapeutic effect of these antibodies is mainly mediated by reactivating antitumor T cell immune responses. Detailed analysis of anti-CTLA4 antibody therapy revealed that an optimal therapeutic efficacy also requires binding to Fc receptors for IgG, FcγR, mediating depletion of intratumoral regulatory T cells. Here, we investigated the role of Fc binding in anti-PD-L1 antibody therapy in the MC38 C57BL/6 and CT26 BALB/c colon adenocarcinoma tumor models. In the MC38 tumor model, all IgG subclasses anti-PD-L1 showed similar therapeutic efficacy when compared to each other in either wild-type mice or in mice deficient for all FcγR. In contrast, in the CT26 tumor model, anti-PD-L1 mIgG2a, the IgG subclass with the highest affinity for activating FcγR, showed stronger therapeutic efficacy than other IgG subclasses. This was associated with a reduction of a myeloid cell subset with high expression of PD-L1 in the tumor microenvironment. This subclass preference for mIgG2a was lost in C57BL/6 × BALB/c F1 mice, indicating that the genetic background of the host may determine the additional clinical benefit of the high affinity antibody subclasses. Based on these data, we conclude that FcγR are not crucial for anti-PD-L1 antibody therapy but might play a role in some tumor models.


Assuntos
Adenocarcinoma , Antineoplásicos Imunológicos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Neoplasias do Colo , Receptores de IgG , Animais , Anticorpos Monoclonais , Modelos Animais de Doenças , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
8.
Blood ; 130(12): 1441-1444, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28754683

RESUMO

Plasmodium vivax is the most prevalent parasite species that causes malaria in humans and exclusively infects reticulocytes. Reticulocyte infection is facilitated by P vivax Duffy binding protein (DBP), which utilizes DARC (Duffy antigen receptor for chemokines) as an entry point. However, the selective tropism of P vivax for transferrin receptor (CD71)-positive reticulocytes remained unexplained, given the constitutive expression of DARC during reticulocyte maturation. CD71/RNA double staining of reticulocytes enriched from adult peripheral blood reveals 4 distinct reticulocyte populations: CD71high/RNAhigh (∼0.016%), CD71low/RNAhigh (∼0.059%), CD71neg/RNAhigh (∼0.37%), CD71neg/RNAlow (∼0.55%), and erythrocytes CD71neg/RNAneg (∼99%). We hypothesized that selective association of DBP with a small population of immature reticulocytes could explain the preference of P vivax for reticulocytes. Binding of specific monoclonal anti-DARC antibodies and recombinant DBP to CD71high/RNAhigh reticulocytes was significantly higher compared with other reticulocyte populations and erythrocytes. Interestingly, the total DARC protein throughout reticulocyte maturation was constant. The data suggest that selective exposure of the DBP binding site within DARC is key to the preferential binding of DBP to immature reticulocytes, which is the potential mechanism underlying the preferential infection of a reticulocyte subset by P vivax.


Assuntos
Sistema do Grupo Sanguíneo Duffy/química , Sistema do Grupo Sanguíneo Duffy/metabolismo , Espaço Extracelular/química , Plasmodium vivax/fisiologia , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Reticulócitos/citologia , Reticulócitos/metabolismo , Tropismo/fisiologia , Especificidade de Anticorpos/imunologia , Antígenos de Protozoários/metabolismo , Diferenciação Celular , Eritrócitos/parasitologia , Humanos , Domínios Proteicos , Proteínas de Protozoários/metabolismo , Relação Estrutura-Atividade
9.
Transfusion ; 59(2): 754-761, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30488958

RESUMO

BACKGROUND: Blood-group typing of donors and patients is essential to avoid incompatible transfusions. Transfusion of incompatible RBCs may result in alloimmunization complicating future transfusions or in the presence of antibodies in adverse reactions. With more than 300 blood group antigens identified, it is difficult to provide fully compatible blood. Currently, standard practice is to match for the most immunogenic antigens. While the current agglutination-based RBC-typing methods are reliable for testing a selected number of antigens, they are not easily adaptable for high-throughput multiplex blood typing beyond the current standard. STUDY DESIGN AND METHODS: Surface plasmon resonance (SPR) is a label-free method to follow molecular-and, very recently, also cellular-interactions in real time. Demonstration of binding of RBCs to blood group antigen-specific antibodies by SPR has already been achieved. Here, we demonstrate the generation of an SPR array equipped with clinically relevant blood group antibodies (A, B, and Rh blood groups). To validate this method, we blindly compared typing of 946 blood donors with results of current diagnostic agglutination-based methods. RESULTS: RBC typing was achieved by monitoring RBC binding to blood group-specific antibodies on the sensor simultaneously within 5 minutes per sample. Regeneration of the chip was robust, allowing for typing of at least 100 samples. The typing results gave a 100% match with classical serology with all antibodies tested besides anti-E/e monoclonals, which gave inconsistent results due to low antibody specificity. CONCLUSION: This study demonstrates that SPR-based RBC typing for multiple antigens can be realized simultaneously with high-quality antibodies, enabling reduced hands-on time and possibly improving cost efficiency.


Assuntos
Antígenos de Grupos Sanguíneos/metabolismo , Tipagem e Reações Cruzadas Sanguíneas/métodos , Eritrócitos/metabolismo , Ressonância de Plasmônio de Superfície/métodos , Adulto , Antígenos de Grupos Sanguíneos/análise , Incompatibilidade de Grupos Sanguíneos/metabolismo , Incompatibilidade de Grupos Sanguíneos/patologia , Incompatibilidade de Grupos Sanguíneos/prevenção & controle , Eritrócitos/patologia , Feminino , Humanos , Masculino
10.
J Immunol ; 199(1): 204-211, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28566370

RESUMO

Abs of the IgG isotype are glycosylated in their Fc domain at a conserved asparagine at position 297. Removal of the core fucose of this glycan greatly increases the affinity for FcγRIII, resulting in enhanced FcγRIII-mediated effector functions. Normal plasma IgG contains ∼94% fucosylated Abs, but alloantibodies against, for example, Rhesus D (RhD) and platelet Ags frequently have reduced fucosylation that enhances their pathogenicity. The increased FcγRIII-mediated effector functions have been put to use in various afucosylated therapeutic Abs in anticancer treatment. To test the functional consequences of Ab fucosylation, we produced V-gene-matched recombinant anti-RhD IgG Abs of the four different subclasses (IgG1-4) with and without core fucose (i.e., 20% fucose remaining). Binding to all human FcγR types and their functional isoforms was assessed with surface plasmon resonance. All hypofucosylated anti-RhD IgGs of all IgG subclasses indeed showed enhanced binding affinity for isolated FcγRIII isoforms, without affecting binding affinity to other FcγRs. In contrast, when testing hypofucosylated anti-RhD Abs with FcγRIIIa-expressing NK cells, a 12- and 7-fold increased erythrocyte lysis was observed with the IgG1 and IgG3, respectively, but no increase with IgG2 and IgG4 anti-RhD Abs. Notably, none of the hypofucosylated IgGs enhanced effector function of macrophages, which, in contrast to NK cells, express a complex set of FcγRs, including FcγRIIIa. Our data suggest that the beneficial effects of afucosylated biologicals for clinical use can be particularly anticipated when there is a substantial involvement of FcγRIIIa-expressing cells, such as NK cells.


Assuntos
Fucose/química , Imunoglobulina G/química , Imunoglobulina G/imunologia , Receptores de IgG/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Fucose/imunologia , Fucose/metabolismo , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Glicosilação , Humanos , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/isolamento & purificação , Imunoglobulina G/metabolismo , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Ligação Proteica , Receptores de IgG/química , Receptores de IgG/genética , Sistema do Grupo Sanguíneo Rh-Hr/imunologia , Ressonância de Plasmônio de Superfície
11.
J Immunol ; 198(1): 82-93, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27864476

RESUMO

Anti-hinge Abs (AHAs) target neoepitopes exposed after proteolytic cleavage of IgG. In this study, we explored the diversity of protease- and IgG subclass-restricted AHAs and their potential as immunological markers in healthy donors (HDs) and patients with rheumatoid arthritis (RA) or systemic lupus erythematosus (SLE). AHA reactivity against IgG-degrading enzyme of Streptococcus pyogenes (IdeS)- or pepsin-generated F(ab')2 fragments of all four human IgG subclasses was determined. AHA reactivity against one or more out of eight F(ab')2 targets was found in 68% (68 of 100) of HDs, 69% (68 of 99) of SLE patients, and 81% (79 of 97) of RA patients. Specific recognition of hinge epitopes was dependent on IgG subclass and protease used to create the F(ab')2 targets, as confirmed by inhibition experiments with F(ab')2 fragments and hinge peptides. Reactivity against IdeS-generated F(ab')2 targets was found most frequently, whereas reactivity against pepsin-generated F(ab')2 targets better discriminated between RA and HDs or SLE, with significantly higher AHA levels against IgG1/3/4. In contrast, AHA levels against pepsin-cleaved IgG2 were comparable. No reactivity against IdeS-generated IgG2-F(ab')2s was detected. The most discriminatory AHA reactivity in RA was against pepsin-cleaved IgG4, with a 35% prevalence, ≥5.8-fold higher than in HDs/SLE, and significantly higher levels (p < 0.0001). Cross-reactivity for F(ab')2s generated from different IgG subclasses was only observed for subclasses having homologous F(ab')2 C termini (IgG1/3/4). For IgG2, two pepsin cleavage sites were identified; anti-hinge reactivity was restricted to only one of these. In conclusion, AHAs specifically recognize IgG subclass- and protease-restricted hinge neoepitopes. Their protease-restricted specificity suggests that different AHA responses developed under distinct inflammatory or infectious conditions and may be markers of, and participants in, such processes.


Assuntos
Artrite Reumatoide/imunologia , Autoanticorpos/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Especificidade de Anticorpos , Artrite Reumatoide/sangue , Autoanticorpos/sangue , Autoantígenos/imunologia , Ensaio de Imunoadsorção Enzimática , Epitopos de Linfócito B/imunologia , Humanos , Imunoglobulina G/sangue , Lúpus Eritematoso Sistêmico/sangue , Espectrometria de Massas , Peptídeo Hidrolases , Ressonância de Plasmônio de Superfície
12.
Ann Rheum Dis ; 77(10): 1471-1479, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29945923

RESUMO

OBJECTIVES: Therapeutic antibodies can provoke an antidrug antibody (ADA) response, which can form soluble immune complexes with the drug in potentially high amounts. Nevertheless, ADA-associated adverse events are usually rare, although with notable exceptions including infliximab. The immune activating effects and the eventual fate of these 'anti-idiotype' complexes are poorly studied, hampering assessment of ADA-associated risk of adverse events. We investigated the in vitro formation and biological activities of ADA-drug anti-idiotype immune complexes using patient-derived monoclonal anti-infliximab antibodies. METHODS: Size distribution and conformation of ADA-drug complexes were characterised by size-exclusion chromatography and electron microscopy. Internalisation of and immune activation by complexes of defined size was visualised with flow imaging, whole blood cell assay and C4b/c ELISA. RESULTS: Size and conformation of immune complexes depended on the concentrations and ratio of drug and ADA; large complexes (>6 IgGs) formed only with high ADA titres. Macrophages efficiently internalised tetrameric and bigger complexes in vitro, but not dimers. Corroborating these results, ex vivo analysis of patient sera demonstrated only dimeric complexes in circulation.No activation of immune cells by anti-idiotype complexes was observed, and only very large complexes activated complement. Unlike Fc-linked hexamers, anti-idiotype hexamers did not activate complement, demonstrating that besides size, conformation governs immune complex potential for triggering effector functions. CONCLUSIONS: Anti-idiotype ADA-drug complexes generally have restricted immune activation capacity. Large, irregularly shaped complexes only form at high concentrations of both drug and ADA, as may be achieved during intravenous infusion of infliximab, explaining the rarity of serious ADA-associated adverse events.


Assuntos
Anticorpos/imunologia , Formação de Anticorpos/efeitos dos fármacos , Complexo Antígeno-Anticorpo/imunologia , Antirreumáticos/imunologia , Infliximab/imunologia , Cromatografia em Gel , Ensaio de Imunoadsorção Enzimática , Humanos , Soro/imunologia
13.
Rheumatology (Oxford) ; 56(11): 2025-2030, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28977504

RESUMO

Objectives: Recent reports describe interactions between the two most prominent RA-related autoantibodies, RFs and ACPAs. The main aim of the present study was to investigate whether RFs preferentially interact with ACPA-IgG over non-ACPA IgG. Additionally, interactions of RFs with IgG with altered galactose content in the Fc domain were examined, since ACPA-IgGs have been shown to have decreased Fc galactose content in RF+ patients. Methods: (Auto)antibody interactions were studied in a surface plasmon resonance imaging assay and with ELISA. Target antibodies were isolated from RA patient plasma (polyclonal ACPA- and non-ACPA-IgG) or recombinantly produced to obtain monoclonal IgG with well-defined Fc galactose content. Interacting autoantibodies were studied using autoantibody positive patient sera and two recombinantly produced IgM-RFs. Results: The sera from 41 RF+ RA patients showed similar RF binding to ACPA- and non-ACPA-IgG and no differences in binding to IgG with normal, high or low levels of Fc galactosylation. Two monoclonal IgM-RFs, one interacting with the CH2-CH3 interface and one binding close to the C-terminal end of the CH3 domain showed no influence of the Fc glycan on IgG binding by IgM-RF. Conclusion: Although interactions between RF and ACPA may play a role in inflammatory processes in RA, RFs do not preferentially interact with ACPA-IgG over non-ACPA-IgG nor with agalatosylated IgG over IgG with normal or high galactosylation.


Assuntos
Artrite Reumatoide/metabolismo , Citrulina/metabolismo , Galactose/metabolismo , Imunoglobulina G/metabolismo , Fator Reumatoide/metabolismo , Sítios de Ligação de Anticorpos , Ensaio de Imunoadsorção Enzimática , Humanos , Domínios de Imunoglobulina , Imunoglobulina M/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional
14.
Blood ; 125(11): 1793-802, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25548320

RESUMO

Immune-mediated platelet destruction is most frequently caused by allo- or autoantibodies via Fcγ receptor-dependent phagocytosis. Disease severity can be predicted neither by antibody isotype nor by titer, indicating that other factors play a role. Here we show that the acute phase protein C-reactive protein (CRP), a ligand for Fc receptors on phagocytes, enhances antibody-mediated platelet destruction by human phagocytes in vitro and in vivo in mice. Without antiplatelet antibodies, CRP was found to be inert toward platelets, but it bound to phosphorylcholine exposed after oxidation triggered by antiplatelet antibodies, thereby enhancing platelet phagocytosis. CRP levels were significantly elevated in patients with allo- and autoantibody-mediated thrombocytopenias compared with healthy controls. Within a week, intravenous immunoglobulin treatment in children with newly diagnosed immune thrombocytopenia led to significant decrease of CRP levels, increased platelet numbers, and clinically decreased bleeding severity. Furthermore, the higher the level of CRP at diagnosis, the longer it took before stable platelet counts were reached. These data suggest that CRP amplifies antibody-mediated platelet destruction and may in part explain the aggravation of thrombocytopenia on infections. Hence, targeting CRP could offer new therapeutic opportunities for these patients.


Assuntos
Proteína C-Reativa/imunologia , Imunoglobulina G/sangue , Fagócitos/imunologia , Fagócitos/metabolismo , Púrpura Trombocitopênica Idiopática/sangue , Púrpura Trombocitopênica Idiopática/imunologia , Reação de Fase Aguda/sangue , Reação de Fase Aguda/imunologia , Animais , Plaquetas/imunologia , Plaquetas/metabolismo , Plaquetas/patologia , Criança , Feminino , Humanos , Imunoglobulinas Intravenosas/uso terapêutico , Técnicas In Vitro , Ligantes , Camundongos , Camundongos Endogâmicos BALB C , Modelos Biológicos , Fagocitose , Ativação Plaquetária , Contagem de Plaquetas , Púrpura Trombocitopênica Idiopática/terapia , Receptores de IgG/metabolismo
15.
Nat Commun ; 15(1): 393, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195612

RESUMO

IgG secreted by B cells carry asparagine N(297)-linked glycans in the fragment crystallizable (Fc) region. Changes in Fc glycosylation are related to health or disease and are functionally relevant, as IgG without Fc glycans cannot bind to Fcɣ receptors or complement factors. However, it is currently unknown whether ɣ-heavy chain (ɣHC) glycans also influence the function of membrane-bound IgG-B-cell receptors (BCR) and thus the outcome of the B-cell immune response. Here, we show in a germinal center (GC)-derived human B-cell line that ɣHC glycans do not affect membrane expression of IgG-BCRs. Furthermore, antigen binding or other BCR-facilitated mechanisms appear unaffected, including BCR downmodulation or BCR-mediated signaling. As expected, secreted IgG lacking Fc glycosylation is unable to carry out effector functions. Together, these observations indicate that IgG-Fc glycosylation serves as a mechanism to control the effector functions of antibodies, but does not regulate the activation of IgG-switched B cells, as its absence had no apparent impact on BCR function.


Assuntos
Anticorpos Monoclonais , Centro Germinativo , Humanos , Glicosilação , Polissacarídeos , Receptores de Antígenos de Linfócitos B , Linhagem Celular , Imunoglobulina G
16.
Biomed Pharmacother ; 175: 116726, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754263

RESUMO

New therapies to treat or prevent viral infections are essential, as recently observed during the COVID-19 pandemic. Here, we propose a therapeutic strategy based on monoclonal antibodies that block the specific interaction between the host receptor Siglec-1/CD169 and gangliosides embedded in the viral envelope. Antibodies are an excellent option for treating infectious diseases based on their high specificity, strong targeting affinity, and relatively low toxicity. Through a process of humanization, we optimized monoclonal antibodies to eliminate sequence liabilities and performed biophysical characterization. We demonstrated that they maintain their ability to block viral entry into myeloid cells. These molecular improvements during the discovery stage are key if we are to maximize efforts to develop new therapeutic strategies. Humanized monoclonal antibodies targeting CD169 provide new opportunities in the treatment of infections caused by ganglioside-containing enveloped viruses, which pose a constant threat to human health. In contrast with current neutralizing antibodies that bind antigens on the infectious particle, our antibodies can prevent several types of enveloped viruses interacting with host cells because they target the host CD169 protein, thus becoming a potential pan-antiviral therapy.


Assuntos
Anticorpos Monoclonais Humanizados , Antivirais , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Humanos , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/imunologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Animais , Tratamento Farmacológico da COVID-19 , Internalização do Vírus/efeitos dos fármacos , SARS-CoV-2/imunologia , SARS-CoV-2/efeitos dos fármacos
17.
bioRxiv ; 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38328049

RESUMO

Antibodies can initiate lung injury in a variety of disease states such as autoimmunity, transfusion reactions, or after organ transplantation, but the key factors determining in vivo pathogenicity of injury-inducing antibodies are unclear. A previously overlooked step in complement activation by IgG antibodies has been elucidated involving interactions between IgG Fc domains that enable assembly of IgG hexamers, which can optimally activate the complement cascade. Here, we tested the in vivo relevance of IgG hexamers in a complement-dependent alloantibody model of acute lung injury. We used three approaches to block alloantibody hexamerization (antibody carbamylation, the K439E Fc mutation, or treatment with domain B from Staphylococcal protein A), all of which reduced acute lung injury. Conversely, Fc mutations promoting spontaneous hexamerization made a harmful alloantibody into a more potent inducer of acute lung injury and rendered an innocuous alloantibody pathogenic. Treatment with a recombinant Fc hexamer 'decoy' therapeutic protected mice from lung injury, including in a model with transgenic human FCGR2A expression that exacerbated pathology. These results indicate a direct in vivo role of IgG hexamerization in initiating acute lung injury and the potential for therapeutics that inhibit or mimic hexamerization to treat antibody-mediated diseases.

19.
Anal Biochem ; 439(1): 4-6, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23583822

RESUMO

A surface plasmon resonance (SPR) array imaging method is outlined for label-free cell profiling. Red blood cells (RBCs) were injected into a flow chamber on top of a spotted sensor surface. Spots contained antibodies to various RBC membrane antigens. A typical sensorgram showed an initial response corresponding to cell sedimentation (S) followed by a specific upward response (T) corresponding to specific binding of cells during a critical wash step. The full analysis cycle for RBC profiling was less than 6 min. The sensor surface could be regenerated at least 100 times, allowing the determination of a cell surface antigen profile of RBCs.


Assuntos
Eritrócitos/citologia , Ressonância de Plasmônio de Superfície/métodos , Anticorpos/imunologia , Antígenos/imunologia , Eritrócitos/imunologia , Humanos
20.
Front Immunol ; 14: 1225603, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868955

RESUMO

Fetal and neonatal alloimmune thrombocytopenia (FNAIT) can occur due to maternal IgG antibodies targeting platelet antigens, causing life-threatening bleeding in the neonate. However, the disease manifests itself in only a fraction of pregnancies, most commonly with anti-HPA-1a antibodies. We found that in particular, the core fucosylation in the IgG-Fc tail is highly variable in anti-HPA-1a IgG, which strongly influences the binding to leukocyte IgG-Fc receptors IIIa/b (FcγRIIIa/b). Currently, gold-standard IgG-glycoanalytics rely on complicated methods (e.g., mass spectrometry (MS)) that are not suited for diagnostic purposes. Our aim was to provide a simplified method to quantify the biological activity of IgG antibodies targeting cells. We developed a cellular surface plasmon resonance imaging (cSPRi) technique based on FcγRIII-binding to IgG-opsonized cells and compared the results with MS. The strength of platelet binding to FcγR was monitored under flow using both WT FcγRIIIa (sensitive to Fc glycosylation status) and mutant FcγRIIIa-N162A (insensitive to Fc glycosylation status). The quality of the anti-HPA-1a glycosylation was monitored as the ratio of binding signals from the WT versus FcγRIIIa-N162A, using glycoengineered recombinant anti-platelet HPA-1a as a standard. The method was validated with 143 plasma samples with anti-HPA-1a antibodies analyzed by MS with known clinical outcomes and tested for validation of the method. The ratio of patient signal from the WT versus FcγRIIIa-N162A correlated with the fucosylation of the HPA-1a antibodies measured by MS (r=-0.52). Significantly, FNAIT disease severity based on Buchanan bleeding score was similarly discriminated against by MS and cSPRi. In conclusion, the use of IgG receptors, in this case, FcγRIIIa, on SPR chips can yield quantitative and qualitative information on platelet-bound anti-HPA-1a antibodies. Using opsonized cells in this manner circumvents the need for purification of specific antibodies and laborious MS analysis to obtain qualitative antibody traits such as IgG fucosylation, for which no clinical test is currently available.


Assuntos
Trombocitopenia Neonatal Aloimune , Gravidez , Feminino , Recém-Nascido , Humanos , Trombocitopenia Neonatal Aloimune/diagnóstico , Ressonância de Plasmônio de Superfície/métodos , Glicosilação , Plaquetas , Imunoglobulina G , Hemorragia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA