Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 187(6): 3422-30, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21856934

RESUMO

The Down syndrome (DS) immune phenotype is characterized by thymus hypotrophy, higher propensity to organ-specific autoimmune disorders, and higher susceptibility to infections, among other features. Considering that AIRE (autoimmune regulator) is located on 21q22.3, we analyzed protein and gene expression in surgically removed thymuses from 14 DS patients with congenital heart defects, who were compared with 42 age-matched controls with heart anomaly as an isolated malformation. Immunohistochemistry revealed 70.48 ± 49.59 AIRE-positive cells/mm(2) in DS versus 154.70 ± 61.16 AIRE-positive cells/mm(2) in controls (p < 0.0001), and quantitative PCR as well as DNA microarray data confirmed those results. The number of FOXP3-positive cells/mm(2) was equivalent in both groups. Thymus transcriptome analysis showed 407 genes significantly hypoexpressed in DS, most of which were related, according to network transcriptional analysis (FunNet), to cell division and to immunity. Immune response-related genes included those involved in 1) Ag processing and presentation (HLA-DQB1, HLA-DRB3, CD1A, CD1B, CD1C, ERAP) and 2) thymic T cell differentiation (IL2RG, RAG2, CD3D, CD3E, PRDX2, CDK6) and selection (SH2D1A, CD74). It is noteworthy that relevant AIRE-partner genes, such as TOP2A, LAMNB1, and NUP93, were found hypoexpressed in DNA microarrays and quantitative real-time PCR analyses. These findings on global thymic hypofunction in DS revealed molecular mechanisms underlying DS immune phenotype and strongly suggest that DS immune abnormalities are present since early development, rather than being a consequence of precocious aging, as widely hypothesized. Thus, DS should be considered as a non-monogenic primary immunodeficiency.


Assuntos
Síndrome de Down/imunologia , Timo/imunologia , Fatores de Transcrição/biossíntese , Fatores de Transcrição/imunologia , Criança , Pré-Escolar , Síndrome de Down/genética , Síndrome de Down/metabolismo , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Lactente , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Timo/metabolismo , Fatores de Transcrição/genética , Proteína AIRE
2.
Results Immunol ; 6: 15-20, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27504259

RESUMO

The thymus is the site of T cell maturation. Notch receptors (Notch1-4) and ligands (DLL1-3 and Jagged1-2) constitute one of several pathways involved in this process. Our data revealed differential constitutive expression of Notch genes and ligands in T lymphocytes and thymic dendritic cells (tDCs), suggesting their participation in human thymocyte maturation. nTreg analyses indicated that the Notch components function in parallel to promote maturation in the thymus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA