RESUMO
Pseudomonas aeruginosa (Pa) remains among clinically-significant Gram-negative species. The carbapenems are often the last resort for treating infections due to multidrug resistant isolates such as Pa. The carbapenems' efficacy is increasingly compromised by the emergence and the rapid spread of Pa carrying carbapenemases which represent a serious threat to public health. This study aimed to establish the resistance profile and to identify carbapenemase genes in isolates with imipenem resistant phenotypes. Among 134 Pa isolates collected both in the community (46) and hospital (88) from January 2021 to December 2021 in Morocco, 18 (8 were from the community and 10 from the hospital settings) were carbapenem resistant. The identification of these strains has been confirmed using matrix assisted laser desorption ionization-time of flight (MALDI-TOF). The antibiotic susceptibility testing against 16 antibiotics was carried out and interpreted according to the recommendations of the European Committee on Antimicrobial Susceptibility Testing (2021). The worrying antibiotics resistance profiles, which spread to cefiderocol for two isolates, were obtained for all isolates, which were eXtensive Drug Resistance showing highly resistant to all antibiotic categories tested, even to ceftolozane-tazobactam. Colistin (100% susceptible) and cefiderocol (88.88%) were the most active agents against carbapenem-resistant Pa (CRPa). Phenotypic detection by NP-CARBA and NG-CARBA tests of metalloßlactamase (MßL) production was confirmed by PCR amplification and sequencing. Three CRPa isolates coharboring blaVIM-2-blaNDM-1 (two isolates) and blaVIM-2-blaIMP-8 (one isolate) genes were detected. In this study, we describe the coexistence of these MßL genes and the cefiderocol resistance in CRPa strains in Morocco. The alarming antibiotic resistance patterns of all these CRPa isolates and their resistance genes emphasize the importance of antimicrobial susceptibility testing in the choice of antibiotics for treating Pa infections.
Assuntos
Pseudomonas aeruginosa , beta-Lactamases , Pseudomonas aeruginosa/genética , Marrocos , beta-Lactamases/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos/farmacologia , Hospitais , Resistência a Medicamentos , Testes de Sensibilidade Microbiana , CefiderocolRESUMO
Background: Multidrug resistance (MDR) and extensively drug-resistant (XDR) are now the biggest threats to human beings. Alternative antimicrobial regimens to conventional antibiotic paradigms are extensively searched. Although Cistus extracts have long been used for infections in traditional folk medicines around the world, their efficacy against resistant bacteria still needs to be elucidated. We aim to investigate the antibiotic susceptibility profiles of clinical strains Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter cloacae (acronym "ESKAPE"), and their resistance mechanisms by PCR, as well as their sensitivity to C. monspeliensis (CM) and C. salviifolius (CS) methanol extracts and their fractions. Methods: Antibiotic susceptibility profile and resistance mechanism were done by antibiogram and PCR. Fractions of CM and CS were obtained using maceration and Soxhlet; their antibacterial activities were evaluated by determining inhibition zone diameter (IZD), minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). Results: Results revealed that all strains were XDR except S. aureus, which was MDR. The PCR indicates the presence of gene-mediated resistance (bla CTX-M, bla SHV, bla OXA-48, bla NDM, bla OXA-51, bla OXA-58, bla IMP, bla VIM, and bla mecA). Also, maceration was slightly better for bioactivity preservation. Overall, the extracts of CM (IZD = 20 mm, MIC = 0.01 mg/mL) were more active than those of CS. All extracts inhibited MRSA (methicillin-resistant Staphylococcus aureus) and ERV (Enterococcus faecium Vancomycin-Resistant) with interesting MICs. The ethyl acetate fraction manifested great efficacy against all strains. Monoterpene hydrocarbons and sesquiterpenes oxygenated were the chemical classes of compounds dominating the analyzed fractions. Viridiflorol was the major compound in ethyl acetate fractions of 59.84% and 70.77% for CM and CS, respectively. Conclusions: The superior activity of extracts to conventional antibiotics was seen for the first time in the pathogens group, and their bactericidal effect could be a promising alternative for developing clinical antibacterial agents against MDR and XDR ESKAPE bacteria.