Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 58(7): 4201-4213, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30860362

RESUMO

A new triphenolic hexaaza chiral macrocyclic amine L forms trinuclear complexes 1-3 with rare earth metal lanthanide(III) ions (Ln = Dy, Eu, and Y) with the general formula [Ln3L(µ3-OH)2(NO3)4(H2O)2]· xCH3OH. The crystal structures of the nitrate derivatives of this type reveal the presence of a {Ln3(µ3-OH)2} core within the macrocycle. For the chloride derivative of dysprosium(III) 4, a duplex of the trinuclear compound is formed to give the hexanuclear [Dy6L2(µ3-OH)3(µ3-O)(µ2-Cl)3Cl4(H2O)2] compound, in which two trinuclear macrocyclic units are linked by bridging chloride anions, supplemented by a hydrogen bond connecting the central oxo and hydroxo bridges as well as by weak interactions at the periphery of the macrocycle. The nuclear magnetic resonance spectra of these complexes reveal a dynamic behavior in solution related to exchange of axial ligands and hindered rotation of phenyl substituents. Magnetic studies of the nitrate (1-3) and chloride (4) dysprosium(III) complexes suggest the presence of weak ferromagnetic interactions between neighboring metal centers. The interaction is strongest for compound 1, and for the related duplex compound 4, it appears to be somewhat weaker. The ac susceptibility measurements for complexes 1 and 4 confirm their field-induced single-molecule magnet behavior with the following characteristics: Ueff = 10.6 cm-1 (15.2 K), τ0 = 2.05 × 10-4 s under 2500 Oe dc fields for 1; Ueff = 7.9 cm-1 (11.4 K), τ0 = 1.68 × 10-4 s under a 3000 Oe dc field for 4.

2.
Chemistry ; 22(2): 598-609, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26642975

RESUMO

Three zinc(II) ions in combination with two units of enantiopure [3+3] triphenolic Schiff-base macrocycles 1, 2, 3, or 4 form cage-like chiral complexes. The formation of these complexes is accompanied by the enantioselective self-recognition of chiral macrocyclic units. The X-ray crystal structures of these trinuclear complexes show hollow metal-organic molecules. In some crystal forms, these barrel-shaped complexes are arranged in a window-to-window fashion, which results in the formation of 1D channels and a combination of both intrinsic and extrinsic porosity. The microporous nature of the [Zn3 12 ] complex is reflected in its N2 , Ar, H2 , and CO2 adsorption properties. The N2 and Ar adsorption isotherms show pressure-gating behavior, which is without precedent for any noncovalent porous material. A comparison of the structures of the [Zn3 12 ] and [Zn3 32 ] complexes with that of the free macrocycle H3 1 reveals a striking structural similarity. In H3 1, two macrocyclic units are stitched together by hydrogen bonds to form a cage very similar to that formed by two macrocyclic units stitched together by Zn(II) ions. This structural similarity is manifested also by the gas adsorption properties of the free H3 1 macrocycle. Recrystallization of [Zn3 12 ] in the presence of racemic 2-butanol resulted in the enantioselective binding of (S)-2-butanol inside the cage through the coordination to one of the Zn(II) ions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA