Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Plant ; 164(4): 442-451, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29536550

RESUMO

The Baltic Sea is one of the largest brackish water bodies in the world. Eutrophication is a major concern in the Baltic Sea due to the leakage of nutrients to the sea with agriculture being the primary source. Wheat (Triticum aestivum L.) is the most widely grown crop in the countries surrounding the Baltic Sea and thus promoting sustainable agriculture practices for wheat cultivation will have a major impact on reducing pollution in the Baltic Sea. This approach requires identifying and addressing key challenges for sustainable wheat production in the region. Implementing new technologies for climate-friendly breeding and digital farming across all surrounding countries should promote sustainable intensification of agriculture in the region. In this review, we highlight major challenges for wheat cultivation in the Baltic Sea region and discuss various solutions integrating transnational collaboration for pre-breeding and technology sharing to accelerate development of low input wheat cultivars with improved host plant resistance to pathogen and enhanced adaptability to the changing climate.


Assuntos
Melhoramento Vegetal/métodos , Triticum/crescimento & desenvolvimento , Triticum/fisiologia , Agricultura , Países Bálticos , Eutrofização/fisiologia
2.
Pest Manag Sci ; 2024 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-39503283

RESUMO

BACKGROUND: The hemibiotrophic fungus Zymoseptoria tritici causing Septoria tritici blotch (STB), is a devastating foliar pathogen of wheat worldwide. A common group of fungicides used to control STB are the demethylation inhibitors (DMIs). DMI fungicides restrict fungal growth by inhibiting the sterol 14-α-demethylase, a protein encoded by CYP51 gene and essential for maintaining fungal cell permeability. However, the adaptation of Z. tritici populations in response to intensive and prolonged DMI usage has resulted in a gradual shift towards reduced sensitivity to this group of fungicides. In this study, 311 isolates were collected pre-treatment from nine wheat-growing regions in Europe in 2019. These isolates were analysed by high-throughput amplicon-based sequencing of nine housekeeping genes and the CYP51 gene. RESULTS: Analyses based on housekeeping genes and the CYP51 gene revealed a lack of population structure in Z. tritici samples irrespective of geographical origin. Minimum spanning network (MSN) analysis showed clustering of multilocus genotypes (MLGs) based on CYP51 haplotypes, indicating an effect of selection due to DMI fungicide use. The majority of the haplotypes identified in this study have been reported previously. The diversity and frequencies of mutations varied across regions. CONCLUSION: Using a high-throughput amplicon-sequencing approach, we found several mutations in the CYP51 gene combined in different haplotypes that are likely to cause fungicide resistance. These mutations occurred irrespective of genetic background or geographical origin. Overall, these results contribute to the development of effective and sustainable risk monitoring for DMI fungicide resistance. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

3.
Pest Manag Sci ; 77(12): 5576-5588, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34392616

RESUMO

BACKGROUND: Over the past decade, demethylation inhibitor (DMI) and succinate dehydrogenase inhibitor (SDHI) fungicides have been extensively used to control to septoria tritici blotch, caused by Zymoseptoria tritici on wheat. This has led to the development and selection of alterations in the target-site enzymes (CYP51 and SDH, respectively). RESULTS: Taking advantage of newly and previously developed qPCR assays, the frequency of key alterations associated with DMI (CYP51-S524T) and SDHI (SDHC-T79N/I, C-N86S and C-H152R) resistance was assessed in Z. tritici-infected wheat leaf samples collected from commercial crops (n = 140) across 14 European countries prior to fungicide application in the spring of 2019. This revealed the presence of a West to East gradient in the frequencies of the most common key alterations conferring azole (S524T) and SDHI resistance (T79N and N86S), with the highest frequencies measured in Ireland and Great Britain. These observations were corroborated by sequencing (CYP51 and SDH subunits) and sensitivity phenotyping (prothioconazole-desthio and fluxapyroxad) of Z. tritici isolates collected from a selection of field samples. Additional sampling made at the end of the 2019 season confirmed the continued increase in frequency of the targeted alterations. Investigations on historical leaf DNA samples originating from different European countries revealed that the frequency of all key alterations (except C-T79I) has been gradually increasing over the past decade. CONCLUSION: Whilst these alterations are quickly becoming dominant in Ireland and Great Britain, scope still exists to delay their selection throughout the wider European population, emphasizing the need for the implementation of fungicide antiresistance measures. © 2021 Society of Chemical Industry.


Assuntos
Fungicidas Industriais , Ascomicetos , Europa (Continente) , Fungicidas Industriais/farmacologia , Doenças das Plantas , Succinato Desidrogenase/genética , Ácido Succínico , Triazóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA