Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 588: 29-33, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34942531

RESUMO

The molecular mechanisms of pathogenesis of atrial myopathy associated with hypertrophic (HCM) and dilated (DCM) mutations of sarcomeric proteins are still poorly understood. For this, one needs to investigate the effects of the mutations on actin-myosin interaction in the atria separately from ventricles. We compared the impact of the HCM and DCM mutations of tropomyosin (Tpm) on the calcium regulation of the thin filament interaction with atrial and ventricular myosin using an in vitro motility assay. We found that the mutations differently affect the calcium regulation of actin-myosin interaction in the atria and ventricles. The DCM E40K Tpm mutation significantly reduced the maximum sliding velocity of thin filaments with ventricular myosin and its Ca2+-sensitivity. With atrial myosin, its effects were less pronounced. The HCM I172T mutation reduced the Ca2+-sensitivity of the sliding velocity of filaments with ventricular myosin but increased it with the atrial one. The HCM L185R mutation did not affect actin-myosin interaction in the atria. The results indicate that the difference in the effects of Tpm mutations on the actin-myosin interaction in the atria and ventricles may be responsible for the difference in pathological changes in the atrial and ventricular myocardium.


Assuntos
Actinas/metabolismo , Cálcio/metabolismo , Cardiomiopatias/genética , Átrios do Coração/metabolismo , Ventrículos do Coração/metabolismo , Mutação/genética , Miosinas/metabolismo , Tropomiosina/genética , Cardiomegalia/complicações , Cardiomegalia/genética , Cardiomiopatias/complicações , Humanos , Ligação Proteica
2.
Biochem Biophys Res Commun ; 534: 8-13, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33307294

RESUMO

Tropomyosin (Tpm) is an actin-binding protein that plays a crucial role in the regulation of muscle contraction. Numerous point mutations in the TPM3 gene encoding Tpm of slow skeletal muscles (Tpm 3.12 or γ-Tpm) are associated with the genesis of various congenital myopathies. Two of these mutations, R91P and R245G, are associated with congenital fiber-type disproportion (CFTD) characterized by hypotonia and generalized muscle weakness. We applied various methods to investigate how these mutations affect the structural and functional properties of γγ-Tpm homodimers. The results show that both these mutations lead to strong structural changes in the γγ-Tpm molecule and significantly impaired its functional properties. These changes in the Tpm properties caused by R91P and R245G mutations give insight into the molecular mechanism of the CFTD development and the weakness of slow skeletal muscles observed in this inherited disease.


Assuntos
Músculo Esquelético/fisiopatologia , Miopatias Congênitas Estruturais/genética , Mutação Puntual , Tropomiosina/genética , Tropomiosina/metabolismo , Actinas/metabolismo , Humanos , Simulação de Dinâmica Molecular , Multimerização Proteica , Tropomiosina/química , Troponina/metabolismo , Viscosidade
3.
FASEB J ; 34(10): 13507-13520, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32797717

RESUMO

Several congenital myopathies of slow skeletal muscles are associated with mutations in the tropomyosin (Tpm) TPM3 gene. Tropomyosin is an actin-binding protein that plays a crucial role in the regulation of muscle contraction. Two Tpm isoforms, γ (Tpm3.12) and ß (Tpm2.2) are expressed in human slow skeletal muscles forming γγ-homodimers and γß-heterodimers of Tpm molecules. We applied various methods to investigate how myopathy-causing mutations M9R, E151A, and K169E in the Tpm γ-chain modify the structure-functional properties of Tpm dimers, and how this affects the muscle functioning. The results show that the features of γγ-Tpm and γß-Tpm with substitutions in the Tpm γ-chain vary significantly. The characteristics of the γγ-Tpm depend on whether these mutations located in only one or both γ-chains. The mechanism of the development of nemaline myopathy associated with the M9R mutation was revealed. At the molecular level, a cause-and-effect relationship has been established for the development of myopathy by the K169E mutation. Also, we described the structure-functional properties of the Tpm dimers with the E151A mutation, which explain muscle weakness linked to this substitution. The results demonstrate a diversity of the molecular mechanisms of myopathy pathogenesis induced by studied Tpm mutations.


Assuntos
Contração Muscular , Miopatias da Nemalina , Tropomiosina , Humanos , Modelos Moleculares , Mutação , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Isoformas de Proteínas , Multimerização Proteica , Tropomiosina/química , Tropomiosina/genética
4.
J Muscle Res Cell Motil ; 42(2): 343-353, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33389411

RESUMO

Phosphorylation of α-tropomyosin (Tpm1.1), a predominant Tpm isoform in the myocardium, is one of the regulatory mechanisms of the heart contractility. The Tpm 1.1 molecule has one site of phosphorylation, Ser283. The degree of the Tpm phosphorylation decreases with age and also changes in heart pathologies. Myocardial pathologies, in particular ischemia, are usually accompanied by pH lowering in the cardiomyocyte cytosol. We studied the effects of acidosis on the structural and functional properties of the pseudo-phosphorylated form of Tpm1.1 with the S283D substitution. We found that in acidosis, the interaction of the N- and C-ends of the S283D Tpm molecules decreases, whereas that of WT Tpm does not change. The pH lowering increased thermostability of the complex of F-actin with S283D Tpm to a greater extent than with WT Tpm. Using an in vitro motility assay with NEM- modified myosin as a load, we assessed the effect of the Tpm pseudo-phosphorylation on the force of the actin-myosin interaction. In acidosis, the force generated by myosin in the interaction with thin filaments containing S283D Tpm was higher than with those containing WT Tpm. Also, the pseudo-phosphorylation increased the myosin ability to resist a load. We conclude that ischemia changes the effect of the phosphorylated Tpm on the contractile function of the myocardium.


Assuntos
Acidose , Tropomiosina , Actinas , Humanos , Miocárdio , Miosinas
5.
Biochem Biophys Res Commun ; 528(4): 658-663, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32513536

RESUMO

Omecamtiv mecarbil (OM), an activator of cardiac myosin, strongly affects contractile characteristics of the ventricles and, to a much lesser extent, the characteristics of atrial contraction. We compared the molecular mechanism of action of OM on the interaction of atrial and ventricular myosin with actin using an optical trap and an in vitro motility assay. In concentrations up to 0.5 µM, OM did not affect the step size of a myosin molecule but reduced it at a higher OM level. OM substantially prolonged the interaction of both isoforms of myosin with actin. However, the interaction characteristics of ventricular myosin with actin were more sensitive to OM than those of atrial myosin. Our results, obtained at the level of isolated proteins, can explain why the impact of OM in therapeutic concentrations on the contractile function of the atrium is less significant as compared to those of the ventricle.


Assuntos
Átrios do Coração/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Miosinas/metabolismo , Ureia/análogos & derivados , Actinas/metabolismo , Animais , Átrios do Coração/metabolismo , Ventrículos do Coração/metabolismo , Contração Miocárdica/efeitos dos fármacos , Mapas de Interação de Proteínas/efeitos dos fármacos , Suínos , Ureia/farmacologia
6.
Biochem Biophys Res Commun ; 508(3): 934-939, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30545627

RESUMO

Tropomyosin (Tpm) is an α-helical coiled-coil actin-binding protein that plays a key role in the Ca2+-regulated contraction of striated muscles. Two Tpm isoforms, α (Tpm 1.1) and ß (Tpm 2.2), are expressed in fast skeletal muscles. These Tpm isoforms can form either αα and ßß homodimers, or αß heterodimers. However, only αα-Tpm and αß-Tpm dimers are usually present in most of fast skeletal muscles, because ßß-homodimers are relatively unstable and cannot exist under physiologic conditions. Nevertheless, the most of previous studies of myopathy-causing mutations in the Tpm ß-chains were performed on the ßß-homodimers. In the present work, we applied different methods to investigate the effects of two myopathic mutations in the ß-chain, Q147P and K49del (i.e. deletion of Lys49), on structural and functional properties of Tpm αß-heterodimers and to compare them with the properties of ßß-homodimers carrying these mutations in both ß-chains. The results show that the properties of αß-Tpm heterodimers with these mutations in the ß-chain differ significantly from the properties of ßß-homodimers with the same substitutions in both ß-chains. This indicates that the αß-heterodimer is a more appropriate model for studying the effects of myopathic mutations in the ß-chain of Tpm than the ßß-homodimer which virtually does not exist in human skeletal muscles.


Assuntos
Mutação , Tropomiosina/genética , Actinas/metabolismo , Animais , Humanos , Doenças Musculares/genética , Multimerização Proteica , Desdobramento de Proteína , Coelhos , Tropomiosina/química , Tropomiosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA