Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
PLoS Biol ; 14(8): e1002527, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27487303

RESUMO

Species are linked to each other by a myriad of positive and negative interactions. This complex spectrum of interactions constitutes a network of links that mediates ecological communities' response to perturbations, such as exploitation and climate change. In the last decades, there have been great advances in the study of intricate ecological networks. We have, nonetheless, lacked both the data and the tools to more rigorously understand the patterning of multiple interaction types between species (i.e., "multiplex networks"), as well as their consequences for community dynamics. Using network statistical modeling applied to a comprehensive ecological network, which includes trophic and diverse non-trophic links, we provide a first glimpse at what the full "entangled bank" of species looks like. The community exhibits clear multidimensional structure, which is taxonomically coherent and broadly predictable from species traits. Moreover, dynamic simulations suggest that this non-random patterning of how diverse non-trophic interactions map onto the food web could allow for higher species persistence and higher total biomass than expected by chance and tends to promote a higher robustness to extinctions.


Assuntos
Biota/fisiologia , Ecologia , Ecossistema , Cadeia Alimentar , Animais , Mudança Climática , Biologia Marinha , Modelos Biológicos , Dinâmica Populacional , Água do Mar , Especificidade da Espécie
2.
Nature ; 486(7401): 52-8, 2012 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-22678279

RESUMO

Localized ecological systems are known to shift abruptly and irreversibly from one state to another when they are forced across critical thresholds. Here we review evidence that the global ecosystem as a whole can react in the same way and is approaching a planetary-scale critical transition as a result of human influence. The plausibility of a planetary-scale 'tipping point' highlights the need to improve biological forecasting by detecting early warning signs of critical transitions on global as well as local scales, and by detecting feedbacks that promote such transitions. It is also necessary to address root causes of how humans are forcing biological changes.


Assuntos
Mudança Climática/estatística & dados numéricos , Planeta Terra , Ecossistema , Modelos Teóricos , Animais , Monitoramento Ambiental , Previsões , Atividades Humanas , Humanos
3.
Ecology ; 96(1): 291-303, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26236914

RESUMO

How multiple types of non-trophic interactions map onto trophic networks in real communities remains largely unknown. We present the first effort, to our knowledge, describing a comprehensive ecological network that includes all known trophic and diverse non-trophic links among >100 coexisting species for the marine rocky intertidal community of the central Chilean coast. Our results suggest that non-trophic interactions exhibit highly nonrandom structures both alone and with respect to food web structure. The occurrence of different types of interactions, relative to all possible links, was well predicted by trophic structure and simple traits of the source and target species. In this community, competition for space and positive interactions related to habitat/refuge provisioning by sessile and/or basal species were by far the most abundant non-trophic interactions. If these patterns are orroborated in other ecosystems, they may suggest potentially important dynamic constraints on the combined architecture of trophic and non-trophic interactions. The nonrandom patterning of non-trophic interactions suggests a path forward for developing a more comprehensive ecological network theory to predict the functioning and resilience of ecological communities.


Assuntos
Organismos Aquáticos , Comportamento Competitivo , Cadeia Alimentar , Animais , Chile
4.
Ecol Lett ; 15(4): 291-300, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22313549

RESUMO

Organisms eating each other are only one of many types of well documented and important interactions among species. Other such types include habitat modification, predator interference and facilitation. However, ecological network research has been typically limited to either pure food webs or to networks of only a few (<3) interaction types. The great diversity of non-trophic interactions observed in nature has been poorly addressed by ecologists and largely excluded from network theory. Herein, we propose a conceptual framework that organises this diversity into three main functional classes defined by how they modify specific parameters in a dynamic food web model. This approach provides a path forward for incorporating non-trophic interactions in traditional food web models and offers a new perspective on tackling ecological complexity that should stimulate both theoretical and empirical approaches to understanding the patterns and dynamics of diverse species interactions in nature.


Assuntos
Ecologia/métodos , Ecossistema , Cadeia Alimentar , Modelos Biológicos , Animais , Comportamento Competitivo , Plantas , Comportamento Predatório , Simbiose
5.
Proc Natl Acad Sci U S A ; 106(1): 187-91, 2009 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-19114659

RESUMO

Darwin's classic image of an "entangled bank" of interdependencies among species has long suggested that it is difficult to predict how the loss of one species affects the abundance of others. We show that for dynamical models of realistically structured ecological networks in which pair-wise consumer-resource interactions allometrically scale to the (3/4) power--as suggested by metabolic theory--the effect of losing one species on another can be predicted well by simple functions of variables easily observed in nature. By systematically removing individual species from 600 networks ranging from 10-30 species, we analyzed how the strength of 254,032 possible pair-wise species interactions depended on 90 stochastically varied species, link, and network attributes. We found that the interaction strength between a pair of species is predicted well by simple functions of the two species' biomasses and the body mass of the species removed. On average, prediction accuracy increases with network size, suggesting that greater web complexity simplifies predicting interaction strengths. Applied to field data, our model successfully predicts interactions dominated by trophic effects and illuminates the sign and magnitude of important nontrophic interactions.


Assuntos
Ecologia , Cadeia Alimentar , Dinâmica Populacional , Animais , Biomassa , Tamanho Corporal , Extinção Biológica , Comportamento Alimentar , Modelos Teóricos
6.
Philos Trans R Soc Lond B Biol Sci ; 377(1857): 20210386, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35757874

RESUMO

Anthropogenic activities are increasingly affecting ecosystems across the globe. Meanwhile, empirical and theoretical evidence suggest that natural systems can exhibit abrupt collapses in response to incremental increases in the stressors, sometimes with dramatic ecological and economic consequences. These catastrophic shifts are faster and larger than expected from the changes in the stressors and happen once a tipping point is crossed. The primary mechanisms that drive ecosystem responses to perturbations lie in their architecture of relationships, i.e. how species interact with each other and with the physical environment and the spatial structure of the environment. Nonetheless, existing theoretical work on catastrophic shifts has so far largely focused on relatively simple systems that have either few species and/or no spatial structure. This work has laid a critical foundation for understanding how abrupt responses to incremental stressors are possible, but it remains difficult to predict (let alone manage) where or when they are most likely to occur in more complex real-world settings. Here, we discuss how scaling up our investigations of catastrophic shifts from simple to more complex-species rich and spatially structured-systems could contribute to expanding our understanding of how nature works and improve our ability to anticipate the effects of global change on ecological systems. This article is part of the theme issue 'Ecological complexity and the biosphere: the next 30 years'.


Assuntos
Ecossistema , Meio Ambiente
7.
Ecology ; 89(1): 134-44, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18376555

RESUMO

Declining predator diversity may drastically affect the biomass and productivity of herbivores and plants. Understanding how changes in predator diversity can propagate through food webs to alter ecosystem function is one of the most challenging ecological research topics today. We studied the effects of predator removal in a simple natural food web in the Sierra Nevada mountains of California (USA). By excluding the predators of the third trophic level of a food web in a full-factorial design, we monitored cascading effects of varying predator diversity and composition on the herbivorous beetle Chrysomela aeneicollis and the willow Salix orestera, which compose the first and second trophic levels of the food web. Decreasing predator diversity increased herbivore biomass and survivorship, and consequently increased the amount of plant biomass consumed via a trophic cascade. Despite this simple linear mean effect of diversity on the strength of the trophic cascade, we found additivity, compensation, and interference in the effects of multiple predators on herbivores and plants. Herbivore survivorship and predator-prey interaction strengths varied with predator diversity, predator identity, and the identity of coexisting predators. Additive effects of predators on herbivores and plants may have been driven by temporal niche separation, whereas compensatory effects and interference occurred among predators with a similar phenology. Together, these results suggest that while the general trends of diversity effects may appear linear and additive, other information about species identity was required to predict the effects of removing individual predators. In a community that is not temporally well-mixed, predator traits such as phenology may help predict impacts of species loss on other species. Information about predator natural history and food web structure may help explain variation in predator diversity effects on trophic cascades and ecosystem function.


Assuntos
Biodiversidade , Besouros/crescimento & desenvolvimento , Cadeia Alimentar , Comportamento Predatório/fisiologia , Salix/parasitologia , Animais , Biomassa , Besouros/fisiologia , Ecossistema , Comportamento Alimentar , Dinâmica Populacional
8.
Nat Commun ; 9(1): 2153, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29855466

RESUMO

Species invasions constitute a major and poorly understood threat to plant-pollinator systems. General theory predicting which factors drive species invasion success and subsequent effects on native ecosystems is particularly lacking. We address this problem using a consumer-resource model of adaptive behavior and population dynamics to evaluate the invasion success of alien pollinators into plant-pollinator networks and their impact on native species. We introduce pollinator species with different foraging traits into network models with different levels of species richness, connectance, and nestedness. Among 31 factors tested, including network and alien properties, we find that aliens with high foraging efficiency are the most successful invaders. Networks exhibiting high alien-native diet overlap, fraction of alien-visited plant species, most-generalist plant connectivity, and number of specialist pollinator species are the most impacted by invaders. Our results mimic several disparate observations conducted in the field and potentially elucidate the mechanisms responsible for their variability.


Assuntos
Abelhas/fisiologia , Ecossistema , Plantas/parasitologia , Polinização/fisiologia , Algoritmos , Animais , Flores/parasitologia , Insetos/classificação , Insetos/fisiologia , Modelos Biológicos , Especificidade da Espécie
9.
PLoS One ; 12(6): e0178536, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28609464

RESUMO

We evaluated the influence of pack stock (i.e., horse and mule) use on meadow plant communities in Sequoia and Yosemite National Parks in the Sierra Nevada of California. Meadows were sampled to account for inherent variability across multiple scales by: 1) controlling for among-meadow variability by using remotely sensed hydro-climatic and geospatial data to pair stock use meadows with similar non-stock (reference) sites, 2) accounting for within-meadow variation in the local hydrology using in-situ soil moisture readings, and 3) incorporating variation in stock use intensity by sampling across the entire available gradient of pack stock use. Increased cover of bare ground was detected only within "dry" meadow areas at the two most heavily used pack stock meadows (maximum animals per night per hectare). There was no difference in plant community composition for any level of soil moisture or pack stock use. Increased local-scale spatial variability in plant community composition (species dispersion) was detected in "wet" meadow areas at the two most heavily used meadows. These results suggest that at the meadow scale, plant communities are generally resistant to the contemporary levels of recreational pack stock use. However, finer-scale within-meadow responses such as increased bare ground or spatial variability in the plant community can be a function of local-scale hydrological conditions. Wilderness managers can improve monitoring of disturbance in Sierra Nevada meadows by adopting multiple plant community indices while simultaneously considering local moisture regimes.


Assuntos
Ecossistema , Equidae/fisiologia , Pradaria , Cavalos/fisiologia , Plantas/metabolismo , Altitude , Animais , California , Conservação dos Recursos Naturais/métodos , Geografia , Parques Recreativos , Plantas/classificação , Dinâmica Populacional , Estações do Ano , Solo/química , Água/metabolismo
10.
Ecol Lett ; 9(5): 526-36, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16643298

RESUMO

High variability in the strength of species interactions is usually considered a source of unstable or unpredictable community patterns. However, recent theoretical work suggests that some types of variance in interaction strength may actually promote stability. Here we provide the first empirical evidence that highly variable, context-dependent species interaction strengths and resilient community patterns can be two sides of the same coin. Field experiments show that a persistent rocky intertidal seascape is remarkably resilient to multiple sources of environmental stochasticity largely because of scale dependent and variable species interaction strengths. Biological interactions exert a stabilizing effect because their intensity varies systematically with changes in both physical sources of mortality of established species, as well as recruitment of new individuals. Strong variation in species interaction strengths with disturbance size and environmental conditions is ubiquitous in nature. Elucidating when this context dependency will be stabilizing is critical to predict community-level responses to anthropogenic disturbances.


Assuntos
Ecossistema , Modelos Teóricos , Animais , Poluentes Ambientais , Fenômenos Geológicos , Geologia , Invertebrados , Biologia Marinha , Mortalidade , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA