RESUMO
A high-density plantation of three genotypes of Populus was exposed to an elevated concentration of carbon dioxide ([CO(2)]; 550 micromol mol(-1)) from planting through canopy closure using a free-air CO(2) enrichment (FACE) technique. The FACE treatment stimulated gross primary productivity by 22 and 11% in the second and third years, respectively. Partitioning of extra carbon (C) among C pools of different turnover rates is of critical interest; thus, we calculated net ecosystem productivity (NEP) to determine whether elevated atmospheric [CO(2)] will enhance net plantation C storage capacity. Free-air CO(2) enrichment increased net primary productivity (NPP) of all genotypes by 21% in the second year and by 26% in the third year, mainly because of an increase in the size of C pools with relatively slow turnover rates (i.e., wood). In all genotypes in the FACE treatment, more new soil C was added to the total soil C pool compared with the control treatment. However, more old soil C loss was observed in the FACE treatment compared with the control treatment, possibly due to a priming effect from newly incorporated root litter. FACE did not significantly increase NEP, probably as a result of this priming effect.
Assuntos
Populus/fisiologia , Árvores/fisiologia , Biomassa , Dióxido de Carbono , Raízes de Plantas/fisiologia , SoloRESUMO
⢠Using the Poplar Free Air CO2 Enrichement (PopFACE) facility we investigated the effects of elevated [CO2 ] on the diurnal and growth cycle responses of photosynthesis and conductance in three poplar species. ⢠In situ diurnal measurements of photosynthesis were made on Populus alba, P. nigra and P. ×euramericana and, in parallel, in vivo maximum capacity for carboxylation (Vc,max ) and maximum rates of electron transport (Jmax ) were determined by gas exchange measurement. ⢠Light saturated (Asat ) and daily integrated (A') photosynthesis increased at elevated [CO2 ] in all species. Elevated [CO2 ] decreased Vc,max and Jmax for P. nigra and Jmax for P.¥euramericana but had no effect on stomatal conductance in any of the species throughout the first growth cycle. During post-coppice re-growth, elevated [CO2 ] did not increase Asat in P. nigra and P.×euramericana due to large decreases in Vc,max and Jmax . ⢠A 50% increase in [CO2 ] under these open-air field conditions resulted in a large and sustained increase in Asat . Although there were some differences between the species, these had little effect on photosynthetic rates at the growth [CO2 ]. Nevertheless the results show that even fast growing trees grown without rooting volume restriction in the open may still show some down-regulation of photosynthetic potential at elevated [CO2 ].
RESUMO
Poplar trees sustain close to the predicted increase in leaf photosynthesis when grown under long-term elevated CO2 concentration ([CO2]). To investigate the mechanisms underlying this response, carbohydrate accumulation and protein expression were determined over four seasons of growth. No increase in the levels of soluble carbohydrates was observed in the young expanding or mature sun leaves of the three poplar genotypes during this period. However, substantial increases in starch levels were observed in the mature leaves of all three poplar genotypes grown in elevated [CO2]. Despite the very high starch levels, no changes in the expression of photosynthetic Calvin cycle proteins, or in the starch biosynthetic enzyme ADP-glucose pyrophosphorylase (AGPase), were observed. This suggested that no long-term photosynthetic acclimation to CO2 occurred in these plants. Our data indicate that poplar trees are able to 'escape' from long-term, acclimatory down-regulation of photosynthesis through a high capacity for starch synthesis and carbon export. These findings show that these poplar genotypes are well suited to the elevated [CO2] conditions forecast for the middle of this century and may be particularly suited for planting for the long-term carbon sequestration into wood.
Assuntos
Ar , Dióxido de Carbono/farmacologia , Regulação para Baixo/fisiologia , Fotossíntese/efeitos dos fármacos , Populus/metabolismo , Árvores/metabolismo , Carboidratos/análise , Cloroplastos/metabolismo , Genótipo , Folhas de Planta/química , Proteínas de Plantas/metabolismo , Fatores de TempoRESUMO
The principles, equipment and procedures for measuring leaf and canopy gas exchange have been described previously as has chlorophyll fluorescence. Simultaneous measurement of the responses of leaf gas exchange and modulated chlorophyll fluorescence to light and CO2 concentration now provide a means to determine a wide range of key biochemical and biophysical limitations on photo synthesis in vivo. Here the mathematical frameworks and practical procedures for determining these parameters in vivo are consolidated. Leaf CO2 uptake (A) versus intercellular CO2 concentration (Ci) curves may now be routinely obtained from commercial gas exchange systems. The potential pitfalls, and means to avoid these, are examined. Calculation of in vivo maximum rates of ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) carboxylation (Vc,max), electron transport driving regeneration of RuBP (Jmax), and triose-phosphate utilization (VTPU) are explained; these three parameters are now widely assumed to represent the major limitations to light-saturated photosynthesis. Precision in determining these in intact leaves is improved by the simultaneous measurement of electron transport via modulated chlorophyll fluorescence. The A/Ci response also provides a simple practical method for quantifying the limitation that stomata impose on CO2 assimilation. Determining the rate of photorespiratory release of oxygen (Rl) has previously only been possible by isotopic methods, now, by combining gas exchange and fluorescence measurements, Rl may be determined simply and routinely in the field. The physical diffusion of CO2 from the intercellular air space to the site of Rubisco in C3 leaves has long been suspected of being a limitation on photosynthesis, but it has commonly been ignored because of the lack of a practical method for its determination. Again combining gas exchange and fluorescence provides a means to determine mesophyll conductance. This method is described and provides insights into the magnitude and basis of this limitation.