Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 414(10): 3243-3255, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34936009

RESUMO

The present paper describes a compact point of care (POC) optical device for therapeutic drug monitoring (TDM). The core of the device is a disposable plastic chip where an immunoassay for the determination of immunosuppressants takes place. The chip is designed in order to have ten parallel microchannels allowing the simultaneous detection of more than one analyte with replicate measurements. The device is equipped with a microfluidic system, which provides sample mixing with the necessary chemicals and pumping samples, reagents and buffers into the measurement chip, and with integrated thin film amorphous silicon photodiodes for the fluorescence detection. Submicrometric fluorescent magnetic particles are used as support in the immunoassay in order to improve the efficiency of the assay. In particular, the magnetic feature is used to concentrate the antibody onto the sensing layer leading to a much faster implementation of the assay, while the fluorescent feature is used to increase the optical signal leading to a larger optical dynamic change and consequently a better sensitivity and a lower limit of detection. The design and development of the whole integrated optical device are here illustrated. In addition, detection of mycophenolic acid and cyclosporine A in spiked solutions and in microdialysate samples from patient blood with the implemented device are reported.


Assuntos
Imunossupressores , Dispositivos Ópticos , Humanos , Imunoensaio , Microfluídica , Silício
2.
Anal Bioanal Chem ; 413(24): 6171-6182, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34278523

RESUMO

Ion-exchange in molten nitrate salts containing metal ions (i.e. silver, copper, etc.) represents a well-established technique able to modify the chemical-physical properties of glass materials. It is widely used not only in the field of integrated optics (IO) but also, more recently, in plasmonics due to the possibility to induce the formation of metal nanoparticles in the glass matrix by an ad hoc thermal post-process. In this work, the application of this technology for the realisation of low-cost and stable surface-enhanced Raman scattering (SERS) active substrates, based on soda-lime glass microrods, is reported. The microrods, with a radius of a few tens of microns, were obtained by cutting the end of an ion-exchanged soda-lime fibre for a length less than 1 cm. As ion source, silver nitrate was selected due to the outstanding SERS properties of silver. The ion-exchange and thermal annealing post-process parameters were tuned to expose the embedded silver nanoparticles on the surface of the glass microrods, avoiding the use of any further chemical etching step. In order to test the combined SERS/fluorescence response of these substrates, labelled molecular beacons (MBs) were immobilised on their surface for deoxyribonucleic acid (DNA) detection. Our experiments confirm that target DNA is attached on the silver nanoparticles and its presence is revealed by both SERS and fluorescence measurements. These results pave the way towards the development of low-cost and stable hybrid fibres, in which SERS and fluorescence interrogation techniques are combined in the same optical device.


Assuntos
DNA/análise , Vidro , Análise Espectral Raman/métodos , DNA/química , Fluorescência , Troca Iônica , Microscopia de Força Atômica , Hibridização de Ácido Nucleico
3.
Opt Express ; 26(9): 11737-11743, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29716092

RESUMO

Whispering Gallery Mode (WGM) micro-resonators like microspheres or microtoroids are typically used as high-Q cavity substrate on which a functional film coating is deposited. In order to exploit the coating properties a critical step is the efficient excitation of WGMs mainly contained inside the deposited layer. We developed a simple method able to assess whether or not these modes are selectively excited. The method is based on monitoring the thermal shift of the excited resonance, which uniquely depends on the thermo-optic coefficient and on the thermal expansion coefficient of the material in which the mode is embedded.

4.
Opt Lett ; 41(7): 1443-6, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27192257

RESUMO

A new complete analysis of the effect of induced inner curvature on refractive index (RI) sensitivity in internally tilted long-period gratings (ITLPGs) is presented. The responses in terms of RI sensitivity of a standard LPG and different ITLPGs with curvature values between 15 and 19 m-1 were compared. The analysis suggests first, that the larger the induced curvature, the greater the RI sensitivity; and second, that the RI sensitivity exponentially increases with both the curvature and cladding mode order. RI sensitivity greater than 100 nm RIU-1 can be attained with curvature greater than 25 m-1 for LP06 mode. Conversely, the temperature sensitivity of ITLPGs is comparable to standard LPGs for the considered cladding mode order.

5.
Sensors (Basel) ; 16(12)2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27898015

RESUMO

The design of Whispering Gallery Mode Resonators (WGMRs) used as an optical transducer for biosensing represents the first and crucial step towards the optimization of the final device performance in terms of sensitivity and Limit of Detection (LoD). Here, we propose an analytical method for the design of an optical microbubble resonator (OMBR)-based biosensor. In order to enhance the OMBR sensing performance, we consider a polymeric layer of high refractive index as an inner coating for the OMBR. The effect of this layer and other optical/geometrical parameters on the mode field distribution, sensitivity and LoD of the OMBR is assessed and discussed, both for transverse electric (TE) and transverse magnetic (TM) polarization. The obtained results do provide physical insights for the development of OMBR-based biosensor.


Assuntos
Técnicas Biossensoriais/métodos , Microbolhas , Limite de Detecção , Polímeros/química , Refratometria
6.
Sensors (Basel) ; 16(9)2016 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-27589761

RESUMO

This work shows the improvements in the sensing capabilities and precision of an Optical Microbubble Resonator due to the introduction of an encaging poly(methyl methacrylate) (PMMA) box. A frequency fluctuation parameter σ was defined as a score of resonance stability and was evaluated in the presence and absence of the encaging system and in the case of air- or water-filling of the cavity. Furthermore, the noise interference introduced by the peristaltic and the syringe pumping system was studied. The measurements showed a reduction of σ in the presence of the encaging PMMA box and when the syringe pump was used as flowing system.

7.
Opt Express ; 23(13): 16693-701, 2015 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-26191681

RESUMO

Optical Micro Bubble Resonators (OMBR) are emerging as new type of sensors characterized by high Q-factor and embedded micro-fluidic. Sensitivity is related to cavity field penetration and, therefore, to the resonator thickness. At the state of the art, methods for OMBR's wall thickness evaluation rely only on a theoretical approach. The purpose of this study is to create a non-destructive method for measuring the shell thickness of a microbubble using reflectance confocal microscopy. The method was validated through measurements on etched capillaries with different thickness and finally it was applied on microbubble resonators.

8.
ACS Appl Polym Mater ; 5(1): 223-235, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36660253

RESUMO

The present research reports on in-water, site-specific photodeposition of glyphosate (GLP)-containing polyacrylamide (PAA-GLP) nanometer-thick films (nanofilms) on an inner surface of fused silica (fused quartz) microcapillaries presilanized with trimethoxy(octen-7-yl)silane (TMOS). TMOS was chosen because of the vinyl group presence in its structure, enabling its participation in the (UV light)-activated free-radical polymerization (UV-FRP) after its immobilization on a fused silica surface. The photodeposition was conducted in an aqueous (H2O/ACN; 3:1, v/v) solution, using UV-FRP (λ = 365 nm) of the acrylamide (AA) functional monomer, the N,N'-methylenebis(acrylamide) (BAA) cross-linking monomer, GLP, and the azobisisobutyronitrile (AIBN) UV-FRP initiator. Acetonitrile (ACN) was used as the porogen and the solvent to dissolve monomers and GLP. Because of the micrometric diameters of microcapillaries, the silanization and photodeposition procedures were first optimized on fused silica slides. The introduction of TMOS, as well as the formation of PAA and PAA-GLP nanofilms, was determined using atomic force microscopy (AFM), scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) spectroscopy, and confocal micro-Raman spectroscopy. Particularly, AFM and SEM-EDX measurements determined nanofilms' thickness and GLP content, respectively, whereas in-depth confocal (micro-Raman spectroscopy)-assisted imaging of PAA- and PAA-GLP-coated microcapillary inner surfaces confirmed the successful photodeposition. Moreover, we examined the GLP impact on polymer gelation by monitoring hydration in a hydrogel and a dried powder PAA-GLP. Our study demonstrated the usefulness of the in-capillary micro-Raman spectroscopy imaging and in-depth profiling of GLP-encapsulated PAA nanofilms. In the future, our simple and inexpensive procedure will enable the fabrication of polymer-based microfluidic chemosensors or adsorptive-separating devices for GLP detection, determination, and degradation.

9.
Appl Opt ; 51(20): 4742-8, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22781250

RESUMO

Optical Q factor measurements are performed on a whispering gallery mode (WGM) disk resonator using a microwave frequency domain approach instead of using an optical domain approach. An absence of hysteretic behavior and a better linearity are obtained when performing linewidth measurements by using a microwave modulation for scanning the resonances instead of the piezoelectric-based frequency tuning capability of the laser. The WGM resonator is then used to stabilize a microwave optoelectronic oscillator. The microwave output of this system generates a 12.48 GHz signal with -94 dBc/Hz phase noise at 10 kHz offset.

10.
Sensors (Basel) ; 12(11): 14604-11, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23202178

RESUMO

Whispering gallery mode resonators (WGMR) are an efficient tool for the realization of optical biosensors. A high Q factor preservation is a crucial requirement for good biosensor performances. In this work we present an Eudragit®L100 coated microspherical WGMR as an efficient immunosensor. The developed resonator was morphologically characterized using fluorescence microscopy. The functionalization process was tuned to preserve the high Q factor of the resonator. The protein binding assay was optically characterized in terms of specificity in buffer solution.


Assuntos
Técnicas Biossensoriais , Ácidos Polimetacrílicos/química , Microscopia de Fluorescência , Microesferas
11.
Opt Express ; 19(10): 9523-8, 2011 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-21643209

RESUMO

Electronic Kerr effect in a polyfluorene derivative is used to reversibly switch near infrared probe beam resonantly coupled to a hybrid polymer-silica microspherical resonator. NIR pumping at 780 nm in pulsed laser regime is used for non-linear switching of the WGM resonances that shift as much as 2 GHz for 50 mW of average pump power, compared to a shift of 250 MHz for the same average pump power at CW regime. The absence of temporal drift and the magnitude of this shift confirm the Kerr nature of the switching, ruling out thermooptical effects.

12.
Sensors (Basel) ; 11(1): 785-805, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22346603

RESUMO

Optical resonators play an ubiquitous role in modern optics. A particular class of optical resonators is constituted by spherical dielectric structures, where optical rays are total internal reflected. Due to minimal reflection losses and to potentially very low material absorption, these guided modes, known as whispering gallery modes, can confer the resonator an exceptionally high quality factor Q, leading to high energy density, narrow resonant-wavelength lines and a lengthy cavity ringdown. These attractive characteristics make these miniaturized optical resonators especially suited as laser cavities and resonant filters, but also as very sensitive sensors. First, a brief analysis is presented of the characteristics of microspherical resonators, of their fabrication methods, and of the light coupling techniques. Then, we attempt to overview some of the recent advances in the development of microspherical biosensors, underlining a number of important applications in the biomedical field.

13.
J Vis Exp ; (110): e53938, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27078752

RESUMO

Dielectric microspheres can confine light and sound for a length of time through high quality factor whispering gallery modes (WGM). Glass microspheres can be thought as a store of energy with a huge variety of applications: compact laser sources, highly sensitive biochemical sensors and nonlinear phenomena. A protocol for the fabrication of both the microspheres and coupling system is given. The couplers described here are tapered fibers. Efficient generation of nonlinear phenomena related to third order optical non-linear susceptibility Χ((3)) interactions in triply resonant silica microspheres is presented in this paper. The interactions here reported are: Stimulated Raman Scattering (SRS), and four wave mixing processes comprising Stimulated Anti-stokes Raman Scattering (SARS). A proof of the cavity-enhanced phenomenon is given by the lack of correlation among the pump, signal and idler: a resonant mode has to exist in order to obtain the pair of signal and idler. In the case of hyperparametric oscillations (four wave mixing and stimulated anti-stokes Raman scattering), the modes must fulfill the energy and momentum conservation and, last but not least, have a good spatial overlap.


Assuntos
Microesferas , Óptica e Fotônica/instrumentação , Espalhamento de Radiação , Dióxido de Silício , Análise Espectral Raman , Lasers , Luz
14.
J Biophotonics ; 6(2): 178-87, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22461241

RESUMO

Whispering gallery mode resonators (WGMR), as silica microspheres, have been recently proposed as an efficient tool for the realisation of optical biosensors. In this work we present a functionalization procedure based on the DNA-aptamer sequence immobilization on WGMR, able to recognize specifically thrombin or VEGF protein, preserving a high Q factor. The protein binding was optically characterized in terms of specificity in buffer solution or in 10% diluted human serum. Simulation of the protein flow was found in good agreement with experimental data. The aptasensor was also chemically regenerated and tested again, demonstrating the reusability of our system.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais/métodos , Proteínas Sanguíneas/análise , Técnicas Biossensoriais/instrumentação , Desenho de Equipamento , Humanos , Ácidos Nucleicos Imobilizados , Técnicas Analíticas Microfluídicas , Microscopia de Força Atômica , Microesferas , Fenômenos Ópticos , Dióxido de Silício , Trombina/análise , Fator A de Crescimento do Endotélio Vascular/análise , Fator A de Crescimento do Endotélio Vascular/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA