Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Neurosci ; 43(28): 5264-5275, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37339875

RESUMO

Although premovement beta-band event-related desynchronization (ß-ERD; 13-30 Hz) from sensorimotor regions is modulated by movement speed, current evidence does not support a strict monotonic association between the two. Given that ß-ERD is thought to increase information encoding capacity, we tested the hypothesis that it might be related to the expected neurocomputational cost of movement, here referred to as action cost. Critically, action cost is greater both for slow and fast movements compared with a medium or "preferred" speed. Thirty-one right-handed participants performed a speed-controlled reaching task while recording their EEG. Results revealed potent modulations of beta power as a function of speed, with ß-ERD being significantly greater both for movements performed at high and low speeds compared with medium speed. Interestingly, medium-speed movements were more often chosen by participants than low-speed and high-speed movements, suggesting that they were evaluated as less costly. In line with this, modeling of action cost revealed a pattern of modulation across speed conditions that strikingly resembled the one found for ß-ERD. Indeed, linear mixed models showed that estimated action cost predicted variations of ß-ERD significantly better than speed. This relationship with action cost was specific to beta power, as it was not found when averaging activity in the mu band (8-12 Hz) and gamma band (31-49 Hz) bands. These results demonstrate that increasing ß-ERD may not merely speed up movements, but instead facilitate the preparation of high-speed and low-speed movements through the allocation of additional neural resources, thereby enabling flexible motor control.SIGNIFICANCE STATEMENT Heightened beta activity has been associated with movement slowing in Parkinson's disease, and modulations of beta activity are commonly used to decode movement parameters in brain-computer interfaces. Here we show that premovement beta activity is better explained by the neurocomputational cost of the action rather than its speed. Instead of being interpreted as a mere reflection of changes in movement speed, premovement changes in beta activity might therefore be used to infer the amount of neural resources that are allocated for motor planning.


Assuntos
Motivação , Córtex Motor , Humanos , Movimento , Mãos , Ritmo beta , Eletroencefalografia , Sincronização Cortical
2.
Eur J Neurosci ; 55(1): 49-66, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34894023

RESUMO

Anterograde interference emerges when two opposite (B → A) or identical tasks (A → A) are learned in close temporal succession, suggesting that interference cannot be fully accounted for by competing memories. Informed by neurobiological evidence, this work tested the hypothesis that interference depends upon the degree of overlap between the neural networks involved in the learning of two tasks. In a fully within-subject and counterbalanced design, participants (n = 24) took part in two learning sessions where the putative overlap between learning-specific neural networks was behaviourally manipulated across four conditions by modifying reach direction and the effector used during gradual visuomotor adaptation. The results showed that anterograde interference emerged regardless of memory competition-that is, to a similar extent in the B → A and A → A conditions-and along a gradient as a function of the tasks' similarity. Specifically, learning under similar reaching conditions generated more anterograde interference than learning under dissimilar reaching conditions, suggesting that putatively overlapping neural networks are required to generate interference. Overall, these results indicate that competing memories are not the sole contributor to anterograde interference and suggest that overlapping neural networks between two learning sessions are required to trigger interference. One discussed possibility is that initial learning modifies the properties of its neural networks to constrain further plasticity induction and learning capabilities, therefore causing anterograde interference in a network-dependent manner. One implication is that learning-specific neural networks must be maximally dissociated to minimize the interfering influences of previous learning on subsequent learning.


Assuntos
Adaptação Fisiológica , Desempenho Psicomotor , Humanos , Aprendizagem
3.
Eur J Neurosci ; 56(5): 4600-4618, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35841189

RESUMO

The neurochemical mechanisms underlying motor memory consolidation remain largely unknown. Based on converging work showing that ethyl alcohol retrogradely enhances declarative memory consolidation, this work tested the hypothesis that post-learning alcohol ingestion would enhance motor memory consolidation. In a within-subject and fully counterbalanced design, participants (n = 24; 12M; 12F) adapted to a gradually introduced visual deviation and ingested, immediately after adaptation, a placebo (PBO), a medium (MED) or high (HIGH) dose of alcohol. The alcohol doses were bodyweight- and gender-controlled to yield peak breath alcohol concentrations of 0.00% in the PBO, ~0.05% in the MED and ~0.095% in the HIGH condition. Retention was evaluated 24 h later through reach aftereffects when participants were sober. The results revealed that retention levels were neither significantly nor meaningfully different in both the MED and HIGH conditions as compared to PBO (all absolute Cohen's dz values < ~0.2; small to negligible effects), indicating that post-learning alcohol ingestion did not alter motor memory consolidation. Given alcohol's known pharmacological GABAergic agonist and NMDA antagonist properties, one possibility is that these neurochemical mechanisms do not decisively contribute to motor memory consolidation. As converging work demonstrated alcohol's retrograde enhancement of declarative memory, the present results suggest that distinct neurochemical mechanisms underlie declarative and motor memory consolidation. Elucidating the neurochemical mechanisms underlying the consolidation of different memory systems may yield insights into the effects of over-the-counter drugs on everyday learning and memory but also inform the development of pharmacological interventions seeking to alter human memory consolidation.


Assuntos
Consolidação da Memória , Consumo de Bebidas Alcoólicas , Ingestão de Alimentos , Etanol/farmacologia , Humanos , Aprendizagem , Destreza Motora
4.
J Neurosci ; 40(12): 2498-2509, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32034068

RESUMO

Previous research suggests that so-called implicit and explicit processes of motor adaptation are implemented by distinct neural structures. Here we tested whether implicit sensorimotor adaptation and strategic re-aiming used to reduce movement error are reflected by spatially distinct EEG oscillatory components. We analyzed beta-band oscillations (∼13-30 Hz), which have long been linked to sensorimotor functions, at the time when these adaptive processes intervene for movement planning. We hypothesized that beta-band activity within sensorimotor regions relates to implicit adaptive processes, whereas beta-band activity within medial motor areas reflects deliberate re-aiming. In female and male human volunteers, we recorded EEG in a motor adaptation task in which a visual rotation was introduced in short series of trials separated by unperturbed trials. Participants were instructed in advance about the nature of the visual perturbation and trained to counter it by strategically re-aiming at a neighboring target. Consistent with our hypothesis, we found that preparatory beta-band activities within the two regions exhibited different patterns of modulation. Beta power in lateral central regions was attenuated when a change in the visual condition rendered internal-model predictions uncertain. In contrast, beta power in medial frontal regions was selectively decreased when participants strategically re-aimed their reaches. We propose that the reduction in lateral central beta power reflects an increased weighting of peripheral sensory information implicitly triggered when an adaptive change in the sensorimotor mapping is required, whereas the reduction in medial frontal beta-band activity relates to the inhibition of automatic motor responses in favor of cognitively controlled movements.SIGNIFICANCE STATEMENT Behavioral and modeling studies have proposed that so-called implicit and explicit components of motor adaptation recruit different neural circuits. Here, we investigated whether these different processes are reflected by spatially distinct beta-band activities. Analyzing EEG signals at the time they influence movement planning, during the foreperiod, we found that beta power within lateral central regions was decreased when a change in visual conditions required implicit sensorimotor remapping, which may reflect enhanced sensory processing when internal-model predictions are rendered uncertain. In contrast, beta-band power within medial frontal areas was selectively attenuated when participants deliberately re-aimed their movements to improve task performance, which may be associated with the inhibition of automatic motor responses in favor of cognitively controlled movements.


Assuntos
Adaptação Fisiológica/fisiologia , Ritmo beta/fisiologia , Desempenho Psicomotor/fisiologia , Sensação/fisiologia , Adulto , Eletroencefalografia , Feminino , Humanos , Imaginação , Masculino , Rotação , Adulto Jovem
5.
J Neurophysiol ; 126(5): 1685-1697, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34614368

RESUMO

Adapting hand movements to changes in our body or the environment is essential for skilled motor behavior, as is the ability to flexibly combine experience gathered in separate contexts. However, it has been shown that when adapting hand movements to two different visuomotor perturbations in succession, interference effects can occur. Here, we investigate whether these interference effects compromise our ability to adapt to the superposition of the two perturbations. Participants tracked with a joystick, a visual target that followed a smooth but an unpredictable trajectory. Four separate groups of participants (total n = 83) completed one block of 50 trials under each of three mappings: one in which the cursor was rotated by 90° (ROTATION), one in which the cursor mimicked the behavior of a mass-spring system (SPRING), and one in which the SPRING and ROTATION mappings were superimposed (SPROT). The order of the blocks differed across groups. Although interference effects were found when switching between SPRING and ROTATION, participants who performed these blocks first performed better in SPROT than participants who had no prior experience with SPRING and ROTATION (i.e., composition). Moreover, participants who started with SPROT exhibited better performance under SPRING and ROTATION than participants who had no prior experience with each of these mappings (i.e., decomposition). Additional analyses confirmed that these effects resulted from components of learning that were specific to the rotational and spring perturbations. These results show that interference effects do not preclude the ability to compose/decompose various forms of visuomotor adaptation.NEW & NOTEWORTHY The ability to compose/decompose task representations is critical for both cognitive and behavioral flexibility. Here, we show that this ability extends to two forms of visuomotor adaptation in which humans have to perform visually guided hand movements. Despite the presence of interference effects when switching between visuomotor maps, we show that participants are able to flexibly compose or decompose knowledge acquired in previous sessions. These results further demonstrate the flexibility of sensorimotor adaptation in humans.


Assuntos
Adaptação Fisiológica/fisiologia , Atividade Motora/fisiologia , Prática Psicológica , Desempenho Psicomotor/fisiologia , Adulto , Feminino , Mãos/fisiologia , Humanos , Masculino , Adulto Jovem
6.
J Neurosci ; 39(15): 2903-2914, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30737309

RESUMO

It has been shown that when incentives are provided during movement preparation, activity in parieto-frontal regions reflects both expected value and motivational salience. Yet behavioral work suggests that the processing of rewards is faster than for punishments, raising the possibility that expected value and motivational salience manifest at different latencies during movement planning. Given the role of beta oscillations (13-30 Hz) in movement preparation and in communication within the reward circuit, this study investigated how beta activity is modulated by positive and negative monetary incentives during reach planning, and in particular whether it reflects expected value and motivational salience at different latencies. Electroencephalography was recorded while male and female humans performed a reaching task in which reward or punishment delivery depended on movement accuracy. Before a preparatory delay period, participants were informed of the consequences of hitting or missing the target, according to four experimental conditions: Neutral (hit/miss:+0/-0¢), Reward (hit/miss:+5/-0¢), Punish (hit/miss:+0/-5¢) and Mixed (hit/miss:+5/-5¢). Results revealed that beta power over parieto-frontal regions was strongly modulated by incentives during the delay period, with power positively correlating with movement times. Interestingly, beta power was selectively sensitive to potential rewards early in the delay period, after which it came to reflect motivational salience as movement onset neared. These results demonstrate that beta activity reflects expected value and motivational salience on different time scales during reach planning. They also provide support for models that link beta activity with basal ganglia and dopamine for the allocation of neural resources according to behavioral salience.SIGNIFICANCE STATEMENT The present work demonstrates that pre-movement parieto-frontal beta power is modulated by monetary incentives in a goal-directed reaching task. Specifically, beta power transiently scaled with the availability of rewards early in movement planning, before reflecting motivational salience as movement onset neared. Moreover, pre-movement beta activity correlated with the vigor of the upcoming movement. These findings suggest that beta oscillations reflect neural processes that mediate the invigorating effect of incentives on motor performance, possibly through dopamine-mediated interactions with the basal ganglia.


Assuntos
Ritmo beta/fisiologia , Motivação/fisiologia , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Gânglios da Base/fisiologia , Eletroencefalografia , Feminino , Lobo Frontal/fisiologia , Humanos , Masculino , Lobo Parietal/fisiologia , Punição , Tempo de Reação , Recompensa , Adulto Jovem
7.
J Cogn Neurosci ; 32(7): 1301-1315, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32073350

RESUMO

It is well documented that providing advanced information regarding the spatial location of a target stimulus (i.e., spatial anticipation) or its timing of occurrence (i.e., temporal anticipation) influences reach preparation, reducing RTs. Yet, it remains unknown whether the RT gains attributable to temporal and spatial anticipation are subtended by similar preparatory dynamics. Here, this issue is addressed in humans by investigating EEG beta-band activity during reach preparation. Participants performed a reach RT task in which they initiated a movement as fast as possible toward visual targets following their appearance. Temporal anticipation was manipulated by having the target appear after a constant or variable delay period, whereas spatial anticipation was manipulated by precueing participants about the upcoming target location in advance or not. Results revealed that temporal and spatial anticipation both reduced reach RTs, with no interaction. Interestingly, temporal and spatial anticipation were associated with fundamentally different patterns of beta-band modulations. Temporal anticipation was associated with beta-band desynchronization over contralateral sensorimotor regions specifically around the expected moment of target onset, the magnitude of which was correlated with RT modulations across participants. In contrast, spatial anticipation did not influence sensorimotor activity but rather led to increased beta-band power over bilateral parieto-occipital regions during the entire delay period. These results argue for distinct states of preparation incurred by temporal and spatial anticipation. In particular, sensorimotor beta-band desynchronization may reflect the timely disinhibition of movement-related neuronal ensembles at the expected time of movement initiation, without reflecting its spatial parameters per se.


Assuntos
Objetivos , Desempenho Psicomotor , Antecipação Psicológica , Cognição , Humanos , Motivação , Movimento
8.
Neuroimage ; 192: 156-165, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30858117

RESUMO

The neurophysiological response to visual stimulation in both humans and animals is characterized by an increase in high frequency amplitude peaking in the gamma range (40-100Hz) and a suppression of low frequency amplitude peaking in the alpha range (10-16Hz). Due to the large number of studies linking amplitude and peak frequency to perception and neurological disorders, there is great interest in understanding the basis of inter-subject variability in gamma and alpha responses. To address this, we measured gamma and alpha amplitude and peak frequency of response to visual stimulation in 42 healthy humans. Using FMRI to delineate active cortical tissue in the same subjects, we correlated these neurophysiological metrics with two structural metrics: distance from active cortex to electrode, and dipole cancellation over active cortex. We find that distance strongly predicted inter-subject gamma amplitude, but had little effect on alpha amplitude, while cancellation had little effect on gamma or alpha amplitude. Neither alpha peak frequency nor gamma peak frequency correlated with our structural metrics. These results suggest that inter-subject variability in gamma amplitude may reflect gross morphology rather than neurophysiological variability, and should be interpreted with caution, while peak frequency may serve as a more sensitive metric of differences in neuronal activity across subjects.


Assuntos
Córtex Cerebral/fisiologia , Eletroencefalografia , Potenciais Evocados Visuais/fisiologia , Ritmo Gama/fisiologia , Adulto , Ritmo alfa/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa
9.
Neuroimage ; 201: 116017, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31319180

RESUMO

The human brain can be described as a network of specialized and spatially distributed regions. The activity of individual regions can be estimated using electroencephalography and the structure of the network can be measured using diffusion magnetic resonance imaging. However, the communication between the different cortical regions occurring through the white matter, coined information flow, cannot be observed by either modalities independently. Here, we present a new method to infer information flow in the white matter of the brain from joint diffusion MRI and EEG measurements. This is made possible by the millisecond resolution of EEG which makes the transfer of information from one region to another observable. A subject specific Bayesian network is built which captures the possible interactions between brain regions at different times. This network encodes the connections between brain regions detected using diffusion MRI tractography derived white matter bundles and their associated delays. By injecting the EEG measurements as evidence into this model, we are able to estimate the directed dynamical functional connectivity whose delays are supported by the diffusion MRI derived structural connectivity. We present our results in the form of information flow diagrams that trace transient communication between cortical regions over a functional data window. The performance of our algorithm under different noise levels is assessed using receiver operating characteristic curves on simulated data. In addition, using the well-characterized visual motor network as grounds to test our model, we present the information flow obtained during a reaching task following left or right visual stimuli. These promising results present the transfer of information from the eyes to the primary motor cortex. The information flow obtained using our technique can also be projected back to the anatomy and animated to produce videos of the information path through the white matter, opening a new window into multi-modal dynamic brain connectivity.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Imagem de Difusão por Ressonância Magnética/métodos , Eletroencefalografia/métodos , Substância Branca/fisiologia , Algoritmos , Humanos , Modelos Neurológicos
10.
Cereb Cortex ; 28(2): 574-584, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27999125

RESUMO

Current models hold that action selection is achieved by competitive interactions between co-existing motor representations associated with each potential action. Critically, selection via competition requires biasing signals to enable one of these alternatives to be selected. This study tested the hypothesis that selection is related to the prestimulus excitability of neuronal ensembles in which movements are encoded, as assessed through the phase of delta-band oscillations (2-4 Hz). Electroencephalography was recorded while participants performed speeded reaches toward appearing visual targets using the hand of their choice. The target locations were controlled such that only targets for which the left and right hands were selected equally often were used for analysis. Results revealed that hand selection as well as reach reaction times strongly depended upon the instantaneous phase of delta at the moment of target onset. This effect was maximal over contralateral motor regions, and occurred in the absence of prestimulus alpha- (8-12 Hz) and beta-band (15-30 Hz) amplitude modulations. These findings demonstrate that the excitability of motor regions acts as a modulatory factor for hand choice during reaching. They extend current models by showing that action selection is related to the underlying brain state independently of previously known decision variables.


Assuntos
Ritmo Delta/fisiologia , Mãos/fisiologia , Córtex Motor/fisiologia , Movimento/fisiologia , Tempo de Reação/fisiologia , Adulto , Feminino , Previsões , Lateralidade Funcional/fisiologia , Humanos , Masculino , Estimulação Luminosa/métodos , Adulto Jovem
11.
J Sports Sci ; 37(21): 2403-2410, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31280685

RESUMO

A large body of literature supports the effectiveness of using video simulations to improve decision-making skills in invasion sports. However, whether these improvements are transferable (from the laboratory to the court/field) and generalizable (from trained to untrained plays) remains unknown. In addition, it remains to be determined whether presenting the video simulations using virtual reality provides an added-value. To investigate these questions, varsity-level basketball players underwent four training sessions during which they observed video clips of basketball plays presented either on a computer screen (CS group) or using a virtual reality headset (VR group). A third group watched footage from NCAA playoff games on a computer screen (CTRL group). Decision-making was assessed on-court before and after the training sessions using two types of plays: "trained" plays (presented during the CS and VR training sessions) and "untrained" plays (presented only during the on-court tests). When facing the trained plays in the posttest, both VR and CS groups significantly outperformed the CTRL group. In contrast, when facing the untrained plays, the VR group outperformed both the CS and CTRL groups. Our results indicate that CS training leads to transferable but non-generalized decision-making gains while VR training leads to transferable and generalized gains.


Assuntos
Basquetebol/psicologia , Tomada de Decisões , Destreza Motora , Gravação em Vídeo , Realidade Virtual , Adolescente , Adulto , Feminino , Generalização Psicológica , Humanos , Masculino , Transferência de Experiência , Adulto Jovem
12.
J Neurosci ; 37(38): 9197-9206, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28821677

RESUMO

Upon exposure to a new sensorimotor relationship, motor behaviors iteratively change early in adaptation but eventually stabilize as adaptation proceeds. Behavioral work suggests that motor memory consolidation is initiated upon the attainment of asymptotic levels of performance. Separate lines of evidence point to a critical role of the primary motor cortex (M1) in consolidation. However, a causal relationship between M1 activity during asymptote and consolidation has yet to be demonstrated. The present study investigated this issue in male and female participants using single-pulse transcranial magnetic stimulation (TMS) to interfere with postmovement activity in M1 in two behavioral phases of a ramp-and-hold visuomotor adaptation paradigm. TMS was either provided after each trial of the ramp phase of adaptation when a gradual increase in the visuomotor rotation caused movements to be changing, or after each trial of the hold phase of adaptation when the rotation was held constant and movements tended to stabilize. Consolidation was assessed by measuring performance on the same task 24 h later. Results revealed that TMS did not influence adaptation to the new visuomotor relationship in either condition. Critically, however, TMS disruption of M1 activity selectively impaired consolidation of motor memories when it was provided during the hold phase of adaptation. This effect did not take place when TMS was delivered over adjacent dorsal premotor cortex or when motor behaviors in late adaptation were prevented from plateauing. Together, these data suggest that the impaired consolidation stemmed from interference with mechanisms of repetition-dependent plasticity in M1.SIGNIFICANCE STATEMENT The present work demonstrates that TMS disruption of M1 activity impairs the consolidation of motor memories selectively when performance reaches asymptotic levels during sensorimotor adaptation. These findings provide evidence for a causal contribution of M1 to motor memory formation when movements tend to repeat, likely through mechanisms of repetition-dependent plasticity.


Assuntos
Consolidação da Memória/fisiologia , Córtex Motor/fisiologia , Movimento/fisiologia , Plasticidade Neuronal/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Feminino , Humanos , Masculino , Estimulação Magnética Transcraniana/métodos
13.
J Neurosci ; 37(22): 5408-5418, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28455370

RESUMO

Although fMRI using the BOLD contrast is widely used for noninvasively mapping hemodynamic brain activity in humans, its exact link to underlying neural processing is poorly understood. Whereas some studies have reported that BOLD signals measured in visual cortex are tightly linked to neural activity in the narrow band γ (NBG) range, others have found a weak correlation between the two. To elucidate the mechanisms behind these conflicting findings, we hypothesized that BOLD reflects the strength of synaptic inputs to cortex, whereas NBG is more dependent on how well these inputs are correlated. To test this, we measured NBG, BOLD, and cerebral blood flow responses to stimuli that either correlate or decorrelate neural activity in human visual cortex. Next, we simulated a recurrent network model of excitatory and inhibitory neurons that reproduced in detail the experimental NBG and BOLD data. Results show that the visually evoked BOLD response was solely predicted by the sum of local inputs, whereas NBG was critically dependent on how well these inputs were correlated. In summary, the NBG-BOLD relationship strongly depends on the nature of sensory input to cortex: stimuli that increase the number of correlated inputs to visual cortex will increase NBG and BOLD in a similar manner, whereas stimuli that increase the number of decorrelated inputs will dissociate the two. The NBG-BOLD relationship is therefore not fixed but is rather highly dependent on input correlations that are both stimulus- and state-dependent.SIGNIFICANCE STATEMENT It is widely believed that γ oscillations in cortex are tightly linked to local hemodynamic activity. Here, we present experimental evidence showing how a stimulus can increase local blood flow to the brain despite suppressing γ power. Moreover, using a sophisticated model of cortical neurons, it is proposed that this occurs when synaptic input to cortex is strong yet decorrelated. Because input correlations are largely determined by the state of the brain, our results demonstrate that the relationship between γ and local hemodynamics is not fixed, but rather context dependent. This likely explains why certain neurodevelopmental disorders are characterized by weak γ activity despite showing normal blood flow.


Assuntos
Mapeamento Encefálico/métodos , Circulação Cerebrovascular/fisiologia , Sincronização Cortical/fisiologia , Ritmo Gama/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia , Potenciais Evocados Visuais/fisiologia , Feminino , Humanos , Masculino , Rede Nervosa/fisiologia , Consumo de Oxigênio/fisiologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
14.
Neuroimage ; 179: 63-78, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29894825

RESUMO

Monetary rewards and punishments have been shown to respectively enhance retention of motor memories and short-term motor performance, but their underlying neural bases in the context of motor control tasks remain unclear. Using electroencephalography (EEG), the present study tested the hypothesis that monetary rewards and punishments are respectively reflected in post-feedback beta-band (20-30 Hz) and theta-band (3-8 Hz) oscillatory power. While participants performed upper limb reaching movements toward visual targets using their right hand, the delivery of monetary rewards and punishments was manipulated as well as their probability (i.e., by changing target size). Compared to unrewarded and unpunished trials, monetary rewards and the successful avoidance of punishments both entailed greater beta-band power at left central electrodes overlaying contralateral motor areas. In contrast, monetary punishments and reward omissions both entailed increased theta-band power at fronto-central scalp sites. Additional analyses revealed that beta-band power was further increased when rewards were lowly probable. In light of previous work demonstrating similar beta-band modulations in basal ganglia during reward processing, the present results may reflect functional communication of reward-related information between the basal ganglia and motor cortical regions. In turn, the increase in fronto-central theta-band power after monetary punishments may reflect an emphasized cognitive need for behavioral adjustments. Globally, the present work identifies possible neural substrates for the growing behavioral evidence showing beneficial effects of monetary feedback on motor learning and performance.


Assuntos
Ritmo beta/fisiologia , Desempenho Psicomotor/fisiologia , Recompensa , Ritmo Teta/fisiologia , Feminino , Humanos , Aprendizagem/fisiologia , Masculino , Adulto Jovem
15.
J Neurophysiol ; 118(5): 2745-2754, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28814633

RESUMO

Sensorimotor control requires an accurate estimate of the state of the body. The brain optimizes state estimation by combining sensory signals with predictions of the sensory consequences of motor commands using a forward model. Given that both sensory signals and predictions are uncertain (i.e., noisy), the brain optimally weights the relative reliance on each source of information during adaptation. In support, it is known that uncertainty in the sensory predictions influences the rate and generalization of visuomotor adaptation. We investigated whether uncertainty in the sensory predictions affects the retention of a new visuomotor relationship. This was done by exposing three separate groups to a visuomotor rotation whose mean was common at 15° counterclockwise but whose variance around the mean differed (i.e., SD of 0°, 3.2°, or 4.5°). Retention was assessed by measuring the persistence of the adapted behavior in a no-vision phase. Results revealed that mean reach direction late in adaptation was similar across groups, suggesting it depended mainly on the mean of exposed rotations and was robust to differences in variance. However, retention differed across groups, with higher levels of variance being associated with a more rapid reversion toward nonadapted behavior. A control experiment ruled out the possibility that differences in retention were accounted for by differences in success rates. Exposure to variable rotations may have increased the uncertainty in sensory predictions, making the adapted forward model more labile and susceptible to change or decay.NEW & NOTEWORTHY The brain predicts the sensory consequences of motor commands through a forward model. These predictions are subject to uncertainty. We use visuomotor adaptation and modulate uncertainty in the sensory predictions by manipulating the variance in exposed rotations. Results reveal that variance does not influence the final extent of adaptation but selectively impairs the retention of motor memories. These results suggest that a more uncertain forward model is more susceptible to change or decay.


Assuntos
Adaptação Fisiológica , Memória , Destreza Motora , Percepção Visual , Adaptação Psicológica , Adulto , Análise de Variância , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Tempo de Reação , Rotação , Incerteza , Adulto Jovem
16.
J Neurophysiol ; 116(4): 1831-1839, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27466131

RESUMO

It is well established that the cortical processing of somatosensory and auditory signals is attenuated when they result from self-generated actions compared with external events. This phenomenon is thought to result from an efference copy of motor commands used to predict the sensory consequences of an action through a forward model. The present work examined whether attenuation also takes place for visual reafferent signals from the moving limb during voluntary reaching movements. To address this issue, EEG activity was recorded in a condition in which visual feedback of the hand was provided in real time and compared with a condition in which it was presented with a 150-ms delay, thus creating a mismatch between the predicted and actual visual consequences of the movement. Results revealed that the amplitude of the N1 component of the visual event-related potential evoked by hand visual feedback over the parietal cortex was significantly smaller when presented in real time compared with when it was delayed. These data suggest that the cortical processing of visual reafferent signals is attenuated when they are correctly predicted, likely as a result of a forward model.


Assuntos
Retroalimentação Sensorial/fisiologia , Percepção de Movimento/fisiologia , Atividade Motora/fisiologia , Lobo Parietal/fisiologia , Adolescente , Adulto , Fenômenos Biomecânicos , Eletroencefalografia , Potenciais Evocados Visuais , Feminino , Mãos/fisiologia , Humanos , Masculino , Modelos Neurológicos , Movimento/fisiologia , Testes Neuropsicológicos , Tempo de Reação , Volição/fisiologia , Adulto Jovem
17.
Neuroimage ; 121: 39-50, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26191651

RESUMO

Vision is a powerful source of information for controlling movements, especially fine actions produced by the hand that require a great deal of accuracy. However, the neural processes that enable vision to enhance movement accuracy are not well understood. In the present study, we tested the hypothesis that the cortical sensitivity to visual inputs increases during a spatially-constrained hand movement compared to a situation where visual information is irrelevant to the task. Specifically, we compared the cortical visual-evoked potentials (VEPs) in response to flashes (right visual hemifield) recorded while participants followed the outline of an irregular polygon with a pen (i.e., tracing), with VEPs recorded when participants simply kept the pen still. This tracing task was chosen specifically because it requires many different visual processes (e.g., detection of line orientation, motion perception, visuomotor transformation) to be completed successfully. The tracing and resting tasks were performed with normal vision and also with mirror-reversed vision, thereby increasing task difficulty when tracing. We predicted that the sensitivity to visual inputs would be enhanced (i.e. greater VEPs) during tracing and that this increase in response sensitivity would be greater when tracing was performed with mirror-reversed vision. In addition, in order to investigate the existence of a link between the sensitivity to visual inputs and the accuracy with which participants traced the shape, we assigned participants to high performer (HP) or low performer (LP) groups according to their tracing performance in the condition with mirror-reversed visual feedback. Source analyses revealed that, for both groups, the sensitivity to visual inputs of the left occipital and MT/MST regions increased when participants traced the shape as compared to when they were resting. Also, for both groups of participants, the mirror-reversed vision did not affect the amplitude of the cortical response to visual inputs but increased the latencies of the responses in the occipital, temporal, and parietal regions. However, the HP group showed cortical responses that largely differed from those displayed by the LP group. Specifically, the HP group demonstrated movement-related increases of visual sensitivity in regions of the visual cortex that were not observed in the LP group. These increased responses to visual inputs were evidenced in the posterior inferior parietal, temporal-occipital, and inferior-temporal regions. Overall, our results are in line with the assertion that increasing the sensitivity to visual inputs serves to promote relevant visual information for the different processes involved during visually-guided hand movements. Our results also suggest that maintaining accurate hand tracing movements in the presence of discrepant visual and somatosensory feedback requires additional perceptual and spatial information processing that is tightly linked to visual inputs.


Assuntos
Córtex Cerebral/fisiologia , Potenciais Evocados Visuais/fisiologia , Atividade Motora/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Visual/fisiologia , Adulto , Eletroencefalografia , Feminino , Mãos , Humanos , Masculino , Córtex Visual/fisiologia , Adulto Jovem
18.
eNeuro ; 10(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37468329

RESUMO

Simultaneous adaptation to opposite visuomotor perturbations is known to be difficult. It has been shown to be possible only in situations where the two tasks are associated with different contexts, being either a different colored background, a different area of workspace, or a different follow-through movement. However, many of these elements evoke explicit mechanisms that could contribute to storing separate (modular) memories. It remains to be shown whether simultaneous adaptation to multiple perturbations is possible when they are introduced in a fully implicit manner. Here, we sought to test this possibility using a visuomotor perturbation small enough to eliminate explicit awareness. Participants (N = 25) performed center-out reaching movements with a joystick to five targets located 72° apart. Depending on the target, visual feedback of cursor position was either veridical (one target) or could be rotated by +5 or -5° (two targets each). After 300 trials of adaptation (60 to each target), results revealed that participants were able to fully compensate for each of the imposed rotations. Moreover, when veridical visual feedback was restored, participants exhibited after-effects that were consistent with the rotations applied at each target. Questionnaires collected immediately after the experiment confirmed that none of the participants were aware of the perturbations. These results speak for the existence of implicit processes that can smoothly handle small and opposite visual perturbations when these are associated with distinct target locations.


Assuntos
Adaptação Fisiológica , Retroalimentação Sensorial , Desempenho Psicomotor , Humanos , Masculino , Feminino , Adolescente , Adulto Jovem , Mãos/fisiologia , Movimento/fisiologia , Rotação , Inquéritos e Questionários , Retroalimentação Sensorial/fisiologia , Desempenho Psicomotor/fisiologia , Adaptação Fisiológica/fisiologia , Estimulação Luminosa
19.
eNeuro ; 10(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37463743

RESUMO

In implicit sensorimotor adaptation, a mismatch between the predicted and actual sensory feedback results in a sensory prediction error (SPE). Sensory predictions have long been thought to be linked to descending motor commands, implying a necessary contribution of movement execution to adaptation. However, recent work has shown that mere motor imagery (MI) also engages predictive mechanisms, opening up the possibility that MI might be sufficient to drive implicit adaptation. In a within-subject design in humans (n = 30), implicit adaptation was assessed in a center-out reaching task, following a single exposure to a visuomotor rotation. It was hypothesized that performing MI of a reaching movement while being provided with an animation of rotated visual feedback (MI condition) would lead to postrotation biases (PRBs) similar to those observed when the movement is executed (Execution condition). Results revealed that both the MI and Execution conditions led to significant directional biases following rotated trials. Yet the magnitude of these biases was significantly larger in the Execution condition. To further probe the contribution of MI to adaptation, a Control condition was conducted in which participants were presented with the same rotated visual animation as in the MI condition, but in which they were prevented from performing MI. Surprisingly, significant biases were also observed in the Control condition, suggesting that MI per se may not have accounted for adaptation. Overall, these results suggest that implicit adaptation can be partially supported by processes other than those that strictly pertain to generating motor commands, although movement execution does potentiate it.


Assuntos
Aprendizagem , Percepção Visual , Humanos , Movimento , Adaptação Fisiológica , Retroalimentação Sensorial , Desempenho Psicomotor
20.
J Neurophysiol ; 108(1): 57-68, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22457458

RESUMO

Experimental evidence and computational modeling suggest that target selection for reaching is associated with the parallel encoding of multiple movement plans in the dorsomedial posterior parietal cortex (dmPPC) and the caudal part of the dorsal premotor cortex (PMdc). We tested the hypothesis that a similar mechanism also accounts for arm selection for unimanual reaching, with simultaneous and separate motor goal representations for the left and right arms existing in the right and left parietofrontal cortex, respectively. We recorded simultaneous electroencephalograms and functional MRI and studied a condition in which subjects had to select the appropriate arm for reaching based on the color of an appearing visuospatial target, contrasting it to a condition in which they had full knowledge of the arm to be used before target onset. We showed that irrespective of whether subjects had to select the arm or not, activity in dmPPC and PMdc was only observed contralateral to the reaching arm after target onset. Furthermore, the latency of activation in these regions was significantly delayed when arm selection had to be achieved during movement planning. Together, these results demonstrate that effector selection is not achieved through the simultaneous specification of motor goals tied to the two arms in bilateral parietofrontal cortex, but suggest that a motor goal is formed in these regions only after an arm is selected for action.


Assuntos
Atenção/fisiologia , Comportamento de Escolha/fisiologia , Movimento/fisiologia , Córtex Pré-Frontal/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Análise de Variância , Ondas Encefálicas/fisiologia , Sinais (Psicologia) , Eletroencefalografia , Feminino , Fixação Ocular , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Estimulação Luminosa , Córtex Pré-Frontal/irrigação sanguínea , Tempo de Reação/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA