Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 191(1): 729-746, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36305683

RESUMO

Medicago (Medicago truncatula) establishes a symbiosis with the rhizobia Sinorhizobium sp, resulting in the formation of nodules where the bacteria fix atmospheric nitrogen. The loss of immunity repression or early senescence activation compromises symbiont survival and leads to the formation of nonfunctional nodules (fix-). Despite many studies exploring an overlap between immunity and senescence responses outside the nodule context, the relationship between these processes in the nodule remains poorly understood. To investigate this phenomenon, we selected and characterized three Medicago mutants developing fix- nodules and showing senescence responses. Analysis of specific defense (PATHOGENESIS-RELATED PROTEIN) or senescence (CYSTEINE PROTEASE) marker expression demonstrated that senescence and immunity seem to be antagonistic in fix- nodules. The growth of senescence mutants on non-sterile (sand/perlite) substrate instead of sterile in vitro conditions decreased nodule senescence and enhanced defense, indicating that environment can affect the immunity/senescence balance. The application of wounding stress on wild-type (WT) fix+ nodules led to the death of intracellular rhizobia and associated with co-stimulation of defense and senescence markers, indicating that in fix+ nodules the relationship between the two processes switches from opposite to synergistic to control symbiont survival during response to the stress. Our data show that the immune response in stressed WT nodules is linked to the repression of DEFECTIVE IN NITROGEN FIXATION 2 (DNF2), Symbiotic CYSTEINE-RICH RECEPTOR-LIKE KINASE (SymCRK), and REGULATOR OF SYMBIOSOME DIFFERENTIATION (RSD), key genes involved in symbiotic immunity suppression. This study provides insight to understand the links between senescence and immunity in Medicago nodules.


Assuntos
Cisteína Proteases , Medicago truncatula , Sinorhizobium meliloti , Medicago truncatula/metabolismo , Simbiose/genética , Proteínas de Plantas/metabolismo , Fixação de Nitrogênio/genética , Cisteína Proteases/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Sinorhizobium meliloti/fisiologia
2.
Mol Plant Microbe Interact ; 32(1): 35-44, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30252618

RESUMO

Plants of the legume family host massive intracellular bacterial populations in the tissues of specialized organs, the nodules. In these organs, the bacteria, named rhizobia, can fix atmospheric nitrogen and transfer it to the plant. This special metabolic skill provides to the legumes an advantage when they grow on nitrogen-scarce substrates. While packed with rhizobia, the nodule cells remain alive, metabolically active, and do not develop defense reactions. Here, we review our knowledge on the control of plant immunity during the rhizobia-legume symbiosis. We present the results of an evolutionary process that selected both divergence of microbial-associated molecular motifs and active suppressors of immunity on the rhizobial side and, on the legume side, active mechanisms that contribute to suppression of immunity.


Assuntos
Fabaceae , Rhizobium , Nódulos Radiculares de Plantas , Simbiose , Evolução Biológica , Fabaceae/imunologia , Fabaceae/microbiologia , Imunidade Vegetal , Nódulos Radiculares de Plantas/microbiologia , Simbiose/imunologia
3.
New Phytol ; 219(1): 310-323, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29668080

RESUMO

Massive intracellular populations of symbiotic bacteria, referred to as rhizobia, are housed in legume root nodules. Little is known about the mechanisms preventing the development of defense in these organs although genes such as SymCRK and DNF2 of the model legume Medicago truncatula are required for this control after rhizobial internalization in host nodule cells. Here we investigated the molecular basis of the symbiotic control of immunity. Proteomic analysis was performed to compare functional (wild-type) and defending nodules (symCRK). Based on the results, the control of plant immunity during the functional step of the symbiosis was further investigated by biochemical and pharmacological approaches as well as by transcript and histology analysis. Ethylene was identified as a potential signal inducing plant defenses in symCRK nodules. Involvement of this phytohormone in symCRK and dnf2-developed defenses and in the death of intracellular rhizobia was confirmed. This negative effect of ethylene depended on the M. truncatula sickle gene and was also observed in the legume Lotus japonicus. Together, these data indicate that prevention of ethylene-triggered defenses is crucial for the persistence of endosymbiosis and that the DNF2 and SymCRK genes are required for this process.


Assuntos
Etilenos/metabolismo , Medicago truncatula/microbiologia , Imunidade Vegetal/fisiologia , Proteínas de Plantas/metabolismo , Sinorhizobium/fisiologia , Adaptação Fisiológica , Proteínas de Bactérias/metabolismo , Etilenos/farmacologia , Medicago truncatula/genética , Medicago truncatula/metabolismo , Proteínas de Plantas/genética , Nódulos Radiculares de Plantas/efeitos dos fármacos , Nódulos Radiculares de Plantas/microbiologia , Transdução de Sinais , Simbiose/efeitos dos fármacos , Simbiose/fisiologia
4.
J Exp Bot ; 66(7): 1977-85, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25682610

RESUMO

Medicago truncatula belongs to the legume family and forms symbiotic associations with nitrogen fixing bacteria, the rhizobia. During these interactions, the plants develop root nodules in which bacteria invade the plant cells and fix nitrogen for the benefit of the plant. Despite massive infection, legume nodules do not develop visible defence reactions, suggesting a special immune status of these organs. Some factors influencing rhizobium maintenance within the plant cells have been previously identified, such as the M. truncatula NCR peptides whose toxic effects are reduced by the bacterial protein BacA. In addition, DNF2, SymCRK, and RSD are M. truncatula genes required to avoid rhizobial death within the symbiotic cells. DNF2 and SymCRK are essential to prevent defence-like reactions in nodules after bacteria internalization into the symbiotic cells. Herein, we used a combination of genetics, histology and molecular biology approaches to investigate the relationship between the factors preventing bacterial death in the nodule cells. We show that the RSD gene is also required to repress plant defences in nodules. Upon inoculation with the bacA mutant, defence responses are observed only in the dnf2 mutant and not in the symCRK and rsd mutants. In addition, our data suggest that lack of nitrogen fixation by the bacterial partner triggers bacterial death in nodule cells after bacteroid differentiation. Together our data indicate that, after internalization, at least four independent mechanisms prevent bacterial death in the plant cell. These mechanisms involve successively: DNF2, BacA, SymCRK/RSD and bacterial ability to fix nitrogen.


Assuntos
Proteínas de Bactérias/genética , Medicago truncatula/imunologia , Imunidade Vegetal , Proteínas de Plantas/genética , Sinorhizobium meliloti/fisiologia , Proteínas de Bactérias/metabolismo , Citoplasma/metabolismo , Medicago truncatula/citologia , Medicago truncatula/genética , Medicago truncatula/metabolismo , Mutação , Nitrogênio/metabolismo , Fixação de Nitrogênio , Fenótipo , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/metabolismo , Nódulos Radiculares de Plantas/citologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/imunologia , Nódulos Radiculares de Plantas/metabolismo , Simbiose
5.
New Phytol ; 203(4): 1305-1314, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24916161

RESUMO

Rhizobia and legumes establish symbiotic interactions leading to the production of root nodules, in which bacteria fix atmospheric nitrogen for the plant's benefit. This symbiosis is efficient because of the high rhizobia population within nodules. Here, we investigated how legumes accommodate such bacterial colonization. We used a reverse genetic approach to identify a Medicago truncatula gene, SymCRK, which encodes a cysteine-rich receptor-like kinase that is required for rhizobia maintenance within the plant cells, and performed detailed phenotypic analyses of the corresponding mutant. The Medicago truncatula symCRK mutant developed nonfunctional and necrotic nodules. A nonarginine asparate (nonRD) motif, typical of receptors involved in innate immunity, is present in the SymCRK kinase domain. Similar to the dnf2 mutant, bacteroid differentiation defect, defense-like reactions and early senescence were observed in the symCRK nodules. However, the dnf2 and symCRK nodules differ by their degree of colonization, which is higher in symCRK. Furthermore, in contrast to dnf2, symCRK is not a conditional mutant. These results suggest that in M. truncatula at least two genes are involved in the symbiotic control of immunity. Furthermore, phenotype differences between the two mutants suggest that two distinct molecular mechanisms control suppression of plant immunity during nodulation.


Assuntos
Medicago truncatula/enzimologia , Medicago truncatula/imunologia , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo , Nódulos Radiculares de Plantas/imunologia , Simbiose/imunologia , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Medicago truncatula/genética , Medicago truncatula/microbiologia , Dados de Sequência Molecular , Fixação de Nitrogênio/genética , Imunidade Vegetal/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas Quinases/química , Proteínas Quinases/genética , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia , Sinorhizobium meliloti
6.
Plant Commun ; 5(4): 100888, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38532645

RESUMO

Immunity and senescence play a crucial role in the functioning of the legume symbiotic nodules. The miss-regulation of one of these processes compromises the symbiosis leading to death of the endosymbiont and the arrest of the nodule functioning. The relationship between immunity and senescence has been extensively studied in plant organs where a synergistic response can be observed. However, the interplay between immunity and senescence in the symbiotic organ is poorly discussed in the literature and these phenomena are often mixed up. Recent studies revealed that the cooperation between immunity and senescence is not always observed in the nodule, suggesting complex interactions between these two processes within the symbiotic organ. Here, we discuss recent results on the interplay between immunity and senescence in the nodule and the specificities of this relationship during legume-rhizobium symbiosis.


Assuntos
Fabaceae , Nódulos Radiculares de Plantas/fisiologia , Simbiose
7.
Curr Biol ; 30(2): 351-358.e4, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31902730

RESUMO

Legumes have the capacity to develop root nodules hosting nitrogen-fixing bacteria, called rhizobia. For the plant, the benefit of the symbiosis is important in nitrogen-deprived conditions, but it requires hosting and feeding massive numbers of rhizobia. Recent studies suggest that innate immunity is reduced or suppressed within nodules [1-10]; this likely maintains viable rhizobial populations. To evaluate the potential consequences and risks associated with an altered immuni`ty in the symbiotic organ, we developed a tripartite system with the model legume Medicago truncatula [11, 12], its nodulating symbiont of the genus Sinorhizobium (syn. Ensifer) [13, 14], and the pathogenic soil-borne bacterium Ralstonia solanacearum [15-18]. We show that nodules are frequent infection sites where pathogen multiplication is comparable to that in the root tips and independent of nodule ability to fix nitrogen. Transcriptomic analyses indicate that, despite the presence of the hosted rhizobia, nodules are able to develop weak defense reactions against pathogenic R. solanacearum. Nodule defense response displays specificity compared to that activated in roots. In agreement with nodule innate immunity, optimal R. solanacearum growth requires pathogen virulence factors. Finally, our data indicate that the high susceptibility of nodules is counterbalanced by the existence of a diffusion barrier preventing pathogen spreading from nodules to the rest of the plant.


Assuntos
Medicago truncatula/microbiologia , Doenças das Plantas/microbiologia , Ralstonia solanacearum/fisiologia , Nódulos Radiculares de Plantas/microbiologia , Sinorhizobium meliloti/fisiologia , Sinorhizobium/fisiologia , Medicago truncatula/imunologia , Imunidade Vegetal , Nódulos Radiculares de Plantas/imunologia
8.
Methods Mol Biol ; 1822: 241-260, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30043308

RESUMO

Medicago truncatula is able to perform a symbiotic association with Sinorhizobium spp. This interaction leads to the formation of a new root organ, the nodule, in which bacteria infect the host cells and fix atmospheric nitrogen for the plant benefit. Multiple and complex processes are essential for the success of this interaction from the recognition phase to nodule formation and functioning, and a wide range of plant host genes is required to orchestrate this phenomenon. Thanks to direct and reverse genetic as well as transcriptomic approaches, numerous genes involved in this symbiosis have been described and improve our understanding of this fantastic association. Herein we propose to update the recent molecular knowledge of how M. truncatula associates to its symbiotic partner Sinorhizobium spp.


Assuntos
Interações Hospedeiro-Patógeno , Medicago truncatula/genética , Medicago truncatula/microbiologia , Sinorhizobium/fisiologia , Simbiose , Envelhecimento , Regulação da Expressão Gênica de Plantas , Medicago truncatula/metabolismo , Mutação , Fixação de Nitrogênio , Desenvolvimento Vegetal/genética , Imunidade Vegetal , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia
9.
Trends Plant Sci ; 20(3): 186-94, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25543258

RESUMO

New research results have significantly revised our understanding of the rhizobium-legume infection process. For example, Nod factors (NFs), previously thought to be absolutely essential for this symbiosis, were shown to be dispensable under particular conditions. Similarly, an NF receptor, previously considered to be solely involved in symbiosis, was shown to function during plant pathogen infections. Indeed, there is a growing realization that plant innate immunity is a crucial component in the establishment and maintenance of symbiosis. We review here the factors involved in the suppression of plant immunity during rhizobium-legume symbiosis, and we attempt to place this information into context with the most recent and sometimes surprising research results.


Assuntos
Fabaceae/imunologia , Fabaceae/microbiologia , Imunidade Vegetal , Rhizobium/fisiologia , Simbiose
10.
PLoS One ; 9(3): e91866, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24632747

RESUMO

Rhizobia and legumes are able to interact in a symbiotic way leading to the development of root nodules. Within nodules, rhizobia fix nitrogen for the benefit of the plant. These interactions are efficient because spectacularly high densities of nitrogen fixing rhizobia are maintained in the plant cells. DNF2, a Medicago truncatula gene has been described as required for nitrogen fixation, bacteroid's persistence and to prevent defense-like reactions in the nodules. This manuscript shows that a Rhizobium mutant unable to differentiate is not sufficient to trigger defense-like reactions in this organ. Furthermore, we show that the requirement of DNF2 for effective symbiosis can be overcome by permissive growth conditions. The dnf2 knockout mutants grown in vitro on agarose or Phytagel as gelling agents are able to produce nodules fixing nitrogen with the same efficiency as the wild-type. However, when agarose medium is supplemented with the plant defense elicitor ulvan, the dnf2 mutant recovers the fix- phenotype. Together, our data show that plant growth conditions impact the gene requirement for symbiotic nitrogen fixation and suggest that they influence the symbiotic suppression of defense reactions in nodules.


Assuntos
Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/microbiologia , Proteínas de Plantas/metabolismo , Simbiose , Técnicas de Inativação de Genes , Medicago truncatula/efeitos dos fármacos , Medicago truncatula/metabolismo , Mutação , Fixação de Nitrogênio/efeitos dos fármacos , Fenótipo , Proteínas de Plantas/genética , Polissacarídeos/farmacologia , Rhizobium/fisiologia , Simbiose/efeitos dos fármacos
11.
Plant Signal Behav ; 8(4): e23915, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23425859

RESUMO

Medicago truncatula and Sinorhizobium meliloti form a symbiotic association resulting in the formation of nitrogen-fixing nodules. In this organ, symbiotic cells contain large numbers of bacteroids. Remarkably, this chronic infection does not trigger visible defense reactions. Despite the importance of this phenomenon for potential transfer of the symbiotic capacity to non-legume plants, the molecular mechanisms underlying this tolerance are not understood. We have characterized the dnf2 M. truncatula mutant blocked in the symbiotic process after bacterial infection of the symbiotic cells. Nodules formed by the mutant contain only few layers of infected cells. Furthermore, they exhibit defense-like reactions which clearly contrast with premature senescence frequently observed during inefficient symbioses. This atypical phenotype raises DNF2 as an exciting starting point to investigate the molecular basis of symbiotic repression of plant defenses.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Medicago truncatula/genética , Proteínas de Plantas/genética , Nodulação/genética , Sinorhizobium meliloti , Simbiose/genética , Senescência Celular , Medicago truncatula/microbiologia , Mutação , Nitrogênio , Fixação de Nitrogênio , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA