Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 19(7): 3020-3029, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29757614

RESUMO

To expand the use of renewable materials, paper products with superior mechanical and optical properties are needed. Although beating, bleaching, and additives are known to improve industrially produced Kraft pulp papers, properties are limited by the quality of the fibers. While the use of nanocellulose has been shown to significantly increase paper properties, the current cost associated with their production has limited their industrial relevance. Here, using a simple mild peracetic acid (PAA) delignification process on spruce, we produce hemicellulose-rich holocellulose fibers (28.8 wt %) with high intrinsic strength (1200 MPa for fibers with microfibrillar angle smaller than 10°). We show that PAA treatment causes less cellulose/hemicellulose degradation and better preserves cellulose nanostructure in comparison to conventional Kraft pulping. High-density holocellulose papers with superior mechanical properties (Young's modulus of 18 GPa and ultimate strength of 195 MPa) are manufactured using a water-based hot-pressing process, without the use of beating or additives. We propose that the preserved hemicelluloses act as "glue" in the interfiber region, improving both mechanical and optical properties of papers. Holocellulose fibers may be affordable and applicable candidates for making special paper/composites where high mechanical performance and/or optical transmittance are of interest.


Assuntos
Celulose/análogos & derivados , Papel/normas , Módulo de Elasticidade , Ácido Peracético/química , Madeira/química
2.
New Phytol ; 205(2): 666-81, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25307149

RESUMO

Certain xylanases from family GH10 are highly expressed during secondary wall deposition, but their function is unknown. We carried out functional analyses of the secondary-wall specific PtxtXyn10A in hybrid aspen (Populus tremula × tremuloides). PtxtXyn10A function was analysed by expression studies, overexpression in Arabidopsis protoplasts and by downregulation in aspen. PtxtXyn10A overexpression in Arabidopsis protoplasts resulted in increased xylan endotransglycosylation rather than hydrolysis. In aspen, the enzyme was found to be proteolytically processed to a 68 kDa peptide and residing in cell walls. Its downregulation resulted in a corresponding decrease in xylan endotransglycosylase activity and no change in xylanase activity. This did not alter xylan molecular weight or its branching pattern but affected the cellulose-microfibril angle in wood fibres, increased primary growth (stem elongation, leaf formation and enlargement) and reduced the tendency to form tension wood. Transcriptomes of transgenic plants showed downregulation of tension wood related genes and changes in stress-responsive genes. The data indicate that PtxtXyn10A acts as a xylan endotransglycosylase and its main function is to release tensional stresses arising during secondary wall deposition. Furthermore, they suggest that regulation of stresses in secondary walls plays a vital role in plant development.


Assuntos
Parede Celular/enzimologia , Populus/enzimologia , Madeira/citologia , Xilosidases/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Quimera , Regulação da Expressão Gênica de Plantas , Hidrólise , Microfibrilas , Família Multigênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Populus/citologia , Populus/genética , Madeira/química , Madeira/enzimologia , Xilanos/metabolismo , Xilema/citologia , Xilema/crescimento & desenvolvimento , Xilema/metabolismo , Xilosidases/genética
3.
Biomacromolecules ; 16(8): 2427-35, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26151837

RESUMO

Wood cellulose nanofibers (CNFs) based on bleached pulp are different from the cellulose microfibrils in the plant cell wall in terms of larger diameter, lower cellulose molar mass, and modified cellulose topochemistry. Also, CNF isolation often requires high-energy mechanical disintegration. Here, a new type of CNFs is reported based on a mild peracetic acid delignification process for spruce and aspen fibers, followed by low-energy mechanical disintegration. Resulting CNFs are characterized with respect to geometry (AFM, TEM), molar mass (SEC), and polysaccharide composition. Cellulose nanopaper films are prepared by filtration and characterized by UV-vis spectrometry for optical transparency and uniaxial tensile tests. These CNFs are unique in terms of high molar mass and cellulose-hemicellulose core-shell structure. Furthermore, the corresponding nanopaper structures exhibit exceptionally high optical transparency and the highest mechanical properties reported for comparable CNF nanopaper structures.


Assuntos
Celulose/química , Nanofibras/química , Madeira/química , Celulose/ultraestrutura , Microscopia Eletrônica de Varredura , Peso Molecular , Nanofibras/ultraestrutura , Análise Espectral , Resistência à Tração , Raios Ultravioleta , Madeira/ultraestrutura
4.
ACS Appl Mater Interfaces ; 11(10): 10310-10319, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30762342

RESUMO

Ecofriendly materials based on well-preserved and nanostructured wood cellulose fibers are investigated for the purpose of load-bearing applications, where optical transmittance may be advantageous. Wood fibers are subjected to mild delignification, flow orientation, and hot-pressing to form an oriented material of low porosity. The biopolymer composition of the fibers is determined. Their morphology is studied by scanning electron microscopy, cellulose orientation is quantified by X-ray diffraction, and the effect of beating is investigated. Hot-pressed networks are impregnated by a methyl methacrylate monomer and polymerized to form thermoplastic wood fiber/poly(methyl methacrylate) biocomposites. Tensile tests are performed, as well as optical transmittance measurements. Structure-property relationships are discussed. High-density molded fibers from holocellulose have mechanical properties comparable with nanocellulose materials and are recyclable. The thermoplastic matrix biocomposites showed superior mechanical properties (Young's modulus of 20 GPa and ultimate strength of 310 MPa) at a fiber volume fraction of 52%, with high optical transmittance of 90%. The study presents a scalable approach for strong, stiff, and transparent molded fibers/biocomposites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA