Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Microbiol ; 135(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38749675

RESUMO

AIMS: In previous studies, it was demonstrated that co-culturing Clostridium pasteurianum and Geobacter sulfurreducens triggers a metabolic shift in the former during glycerol fermentation. This shift, attributed to interspecies electron transfer and the exchange of other molecules, enhances the production of 1,3-propanediol at the expense of the butanol pathway. The aim of this investigation is to examine the impact of fumarate, a soluble compound usually used as an electron acceptor for G. sulfurreducens, in the metabolic shift previously described in C. pasteurianum. METHODS AND RESULTS: Experiments were conducted by adding along with glycerol, acetate, and different quantities of fumarate in co-cultures of G. sulfurreducens and C. pasteurianum. A metabolic shift was exhibited in all the co-culture conditions. This shift was more pronounced at higher fumarate concentrations. Additionally, we observed G. sulfurreducens growing even in the absence of fumarate and utilizing small amounts of this compound as an electron donor rather than an electron acceptor in the co-cultures with high fumarate addition. CONCLUSIONS: This study provided evidence that interspecies electron transfer continues to occur in the presence of a soluble electron acceptor, and the metabolic shift can be enhanced by promoting the growth of G. sulfurreducens.


Assuntos
Clostridium , Fermentação , Fumaratos , Geobacter , Geobacter/metabolismo , Geobacter/crescimento & desenvolvimento , Fumaratos/metabolismo , Clostridium/metabolismo , Clostridium/crescimento & desenvolvimento , Transporte de Elétrons , Glicerol/metabolismo , Técnicas de Cocultura , Propilenoglicóis/metabolismo
2.
Appl Microbiol Biotechnol ; 106(2): 865-876, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34939136

RESUMO

Recently, a study showed that glycerol fermentation by Clostridium pasteurianum could be metabolically redirected when the electroactive bacterium Geobacter sulfurreducens was added in the culture. It was assumed that this metabolic shift of the fermentative species resulted from an interspecies electron transfer. The aim of this study was to find out the mechanisms used for this interaction and how they affect the metabolism of C. pasteurianum. To get insights into the mechanisms involved, several coculture setups and RNA sequencing with differential expression analysis were performed. As a result, a putative interaction model was proposed: G. sulfurreducens produces cobamide molecules that possibly modify C. pasteurianum metabolic pathway at the key enzyme glycerol dehydratase, and affect its vanadium nitrogenase expression. In addition, the results suggested that G. sulfurreducens' electrons could enter C. pasteurianum through its transmembrane flavin-bound polyferredoxin and cellular cytochrome b5-rubredoxin interplay, putatively reinforcing the metabolic shift. Unravelling the mechanisms behind the interaction between fermentative and electroactive bacteria helps to better understand the role of bacterial interactions in fermentation setups. KEY POINTS: • C. pasteurianum-G. sulfurreducens interaction inducing a metabolic shift is mediated • C. pasteurianum's metabolic shift in coculture might be induced by cobamides • Electrons possibly enter C. pasteurianum through a multiflavin polyferredoxin.


Assuntos
Geobacter , Clostridium/genética , Transporte de Elétrons , Geobacter/genética , Oxirredução
3.
Metab Eng ; 46: 13-19, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29474840

RESUMO

Muconic acid (MA) is a dicarboxylic acid used for the production of industrially relevant chemicals such as adipic acid, terephthalic acid, and caprolactam. Because the synthesis of these polymer precursors generates toxic intermediates by utilizing petroleum-derived chemicals and corrosive catalysts, the development of alternative strategies for the bio-based production of MA has garnered significant interest. Plants produce organic carbon skeletons by harvesting carbon dioxide and energy from the sun, and therefore represent advantageous hosts for engineered metabolic pathways towards the manufacturing of chemicals. In this work, we engineered Arabidopsis to demonstrate that plants can serve as green factories for the bio-manufacturing of MA. In particular, dual expression of plastid-targeted bacterial salicylate hydroxylase (NahG) and catechol 1,2-dioxygenase (CatA) resulted in the conversion of the endogenous salicylic acid (SA) pool into MA via catechol. Sequential increase of SA derived from the shikimate pathway was achieved by expressing plastid-targeted versions of bacterial salicylate synthase (Irp9) and feedback-resistant 3-deoxy-D-arabino-heptulosonate synthase (AroG). Introducing this SA over-producing strategy into engineered plants that co-express NahG and CatA resulted in a 50-fold increase in MA titers. Considering that MA was easily recovered from senesced plant biomass after harvest, we envision the phytoproduction of MA as a beneficial option to add value to bioenergy crops.


Assuntos
Arabidopsis/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Ácido Sórbico/análogos & derivados , Arabidopsis/genética , Catecol 1,2-Dioxigenase/genética , Catecol 1,2-Dioxigenase/metabolismo , Liases/biossíntese , Liases/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Plantas Geneticamente Modificadas/genética , Ácido Salicílico/metabolismo , Ácido Sórbico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA