Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Biochem Cell Biol ; 102(1): 73-84, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37703582

RESUMO

Human muscle-specific RING fingers (MURFs) are members of the tripartite motif (TRIM) family of proteins characterized by their C-terminal subgroup one signature domain. MURFs play a role in sarcomere formation and microtubule dynamics. It was previously established that some TRIMs undergo post-translational modification by small ubiquitin-like modifier (SUMO). In this study, we explored the putative SUMOylation of MURF proteins as well as their interactions with SUMO. MURF proteins (TRIM54, TRIM55, and TRIM63) were not found to be SUMOylated. However, TRIM55 turnover by proteasomal and lysosomal degradation was higher upon overexpression of SUMO-3 but not of SUMO-1. Furthermore, it is predicted that TRIM55 contains two potential SUMO-interacting motifs (SIMs). We found that SIM1- and SIM2-mutated TRIM55 were more stable than the wild-type (WT) protein partly due to decreased degradation. Consistently, SIM-mutated TRIM55 was less polyubiquitinated than the WT protein, despite similar monoubiquitination levels. Using IF microscopy, we observed that SIM motifs influenced TRIM55 subcellular localization. In conclusion, our results suggest that SUMO-3 or SUMO-3-modified proteins modulate the localization, stability, and RING ubiquitin ligase activity of TRIM55.


Assuntos
Proteína SUMO-1 , Ubiquitina , Humanos , Ubiquitina/metabolismo , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
Bioorg Med Chem Lett ; 101: 129646, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38331225

RESUMO

Dengue fever is an infectious disease caused by the dengue virus (DENV), an RNA Flavivirus transmitted by the mosquitoes Aedes aegypti and Aedes albopictus widespread in tropical, subtropical and also temperate regions. Symptoms range from a simple cold to a severe, life-threatening haemorrhagic fever. According to the WHO, it affects around 390 million people per year. No antiviral treatment for DENV is available, and the Dengvaxia vaccine is only intended for people over 9 years of age who have contracted dengue one time in the past, and shows serotype-specific effectiveness. There is therefore a crying need to discover new molecules with antiviral power against flaviviruses. The present study was carried out to evaluate the anti-DENV activities and cytotoxicity of triazenes obtained by diazocopulation. Some triazenes were highly cytotoxic (16, and 25) to hepatocarcinoma Huh7 cells, whereas others displayed strong anti-DENV potential. The antiviral activity ranged from EC50 = 7.82 µM to 48.12 µM in cellulo, with a selectivity index (CC50/EC50) greater than 9 for two of the compounds (10, and 20). In conclusion, these new triazenes could serve as a lead to develop and optimize drugs against DENV.


Assuntos
Aedes , Vírus da Dengue , Dengue , Animais , Humanos , Dengue/tratamento farmacológico , Antivirais/farmacologia
3.
Molecules ; 27(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36080382

RESUMO

Amaryllidaceae alkaloids (AAs) are a structurally diverse family of alkaloids recognized for their many therapeutic properties, such as antiviral, anti-cholinesterase, and anticancer properties. Norbelladine and its derivatives, whose biological properties are poorly studied, are key intermediates required for the biosynthesis of all ~650 reported AAs. To gain insight into their therapeutic potential, we synthesized a series of O-methylated norbelladine-type alkaloids and evaluated their cytotoxic effects on two types of cancer cell lines, their antiviral effects against the dengue virus (DENV) and the human immunodeficiency virus 1 (HIV-1), and their anti-Alzheimer's disease (anti-cholinesterase and -prolyl oligopeptidase) properties. In monocytic leukemia cells, norcraugsodine was highly cytotoxic (CC50 = 27.0 µM), while norbelladine was the most cytotoxic to hepatocarcinoma cells (CC50 = 72.6 µM). HIV-1 infection was impaired only at cytotoxic concentrations of the compounds. The 3,4-dihydroxybenzaldehyde (selectivity index (SI) = 7.2), 3',4'-O-dimethylnorbelladine (SI = 4.8), 4'-O-methylnorbelladine (SI > 4.9), 3'-O-methylnorbelladine (SI > 4.5), and norcraugsodine (SI = 3.2) reduced the number of DENV-infected cells with EC50 values ranging from 24.1 to 44.9 µM. The O-methylation of norcraugsodine abolished its anti-DENV potential. Norbelladine and its O-methylated forms also displayed butyrylcholinesterase-inhibition properties (IC50 values ranging from 26.1 to 91.6 µM). Altogether, the results provided hints of the structure−activity relationship of norbelladine-type alkaloids, which is important knowledge for the development of new inhibitors of DENV and butyrylcholinesterase.


Assuntos
Alcaloides , Alcaloides de Amaryllidaceae , Amaryllidaceae , Alcaloides/química , Alcaloides/farmacologia , Amaryllidaceae/metabolismo , Alcaloides de Amaryllidaceae/química , Antivirais/farmacologia , Butirilcolinesterase , Inibidores da Colinesterase , Humanos , Tiramina/análogos & derivados
4.
Antimicrob Agents Chemother ; 65(9): e0039821, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34152811

RESUMO

Dengue fever, caused by dengue virus (DENV), is the most prevalent arthropod-borne viral disease and is endemic in many tropical and subtropical parts of the world, with an increasing incidence in temperate regions. The closely related flavivirus Zika virus (ZIKV) can be transmitted vertically in utero and causes congenital Zika syndrome and other birth defects. In adults, ZIKV is associated with Guillain-Barré syndrome. There are no approved antiviral therapies against either virus. Effective antiviral compounds are urgently needed. Amaryllidaceae alkaloids (AAs) are a specific class of nitrogen-containing compounds produced by plants of the Amaryllidaceae family with numerous biological activities. Recently, the AA lycorine was shown to present strong antiflaviviral properties. Previously, we demonstrated that Crinum jagus contained lycorine and several alkaloids of the cherylline, crinine, and galanthamine types with unknown antiviral potential. In this study, we explored their biological activities. We show that C. jagus crude alkaloid extract inhibited DENV infection. Among the purified AAs, cherylline efficiently inhibited both DENV (50% effective concentration [EC50], 8.8 µM) and ZIKV replication (EC50, 20.3 µM) but had no effect on HIV-1 infection. Time-of-drug-addition and -removal experiments identified a postentry step as the one targeted by cherylline. Consistently, using subgenomic replicons and replication-defective genomes, we demonstrate that cherylline specifically hinders the viral RNA synthesis step but not viral translation. In conclusion, AAs are an underestimated source of antiflavivirus compounds, including the effective inhibitor cherylline, which could be optimized for new therapeutic approaches.


Assuntos
Alcaloides , Alcaloides de Amaryllidaceae , Amaryllidaceae , Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Adulto , Alcaloides/farmacologia , Alcaloides de Amaryllidaceae/farmacologia , Humanos , Isoquinolinas , Replicação Viral , Infecção por Zika virus/tratamento farmacológico
5.
Molecules ; 26(23)2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34885964

RESUMO

Amaryllidaceae plants are rich in alkaloids with biological properties. Pancratium trianthum is an Amaryllidaceae species widely used in African folk medicine to treat several diseases such as central nervous system disorders, tumors, and microbial infections, and it is used to heal wounds. The current investigation explored the biological properties of alkaloid extracts from bulbs of P. trianthum collected in the Senegalese flora. Alkaloid extracts were analyzed and identified by chromatography and mass spectrometry. Alkaloid extracts from P. trianthum displayed pleiotropic biological properties. Cytotoxic activity of the extracts was determined on hepatocarcinoma Huh7 cells and on acute monocytic leukemia THP-1 cells, while agar diffusion and microdilution assays were used to evaluate antibacterial activity. Antiviral activity was measured by infection of extract-treated cells with dengue virus (DENVGFP) and human immunodeficiency virus-1 (HIV-1GFP) reporter vectors. Cytotoxicity and viral inhibition were the most striking of P. trianthum's extract activities. Importantly, non-cytotoxic concentrations were highly effective in completely preventing DENVGFP replication and in reducing pseudotyped HIV-1GFP infection levels. Our results show that P. trianthum is a rich source of molecules for the potential discovery of new treatments against various diseases. Herein, we provide scientific evidence to rationalize the traditional uses of P. trianthum for wound treatment as an anti-dermatosis and antiseptic agent.


Assuntos
Alcaloides de Amaryllidaceae/química , Alcaloides de Amaryllidaceae/farmacologia , Amaryllidaceae/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antivirais/química , Antivirais/farmacologia , Linhagem Celular Tumoral , Dengue/tratamento farmacológico , Vírus da Dengue/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia
6.
PLoS Pathog ; 14(11): e1007398, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30419009

RESUMO

Elite controllers (ECs) are a rare subset of HIV-1 slow progressors characterized by prolonged viremia suppression. HLA alleles B27 and B57 promote the cytotoxic T lymphocyte (CTL)-mediated depletion of infected cells in ECs, leading to the emergence of escape mutations in the viral capsid (CA). Whether those mutations modulate CA detection by innate sensors and effectors is poorly known. Here, we investigated the targeting of CA from B27/B57+ individuals by cytosolic antiviral factors Mx2 and TRIM5α. Toward that aim, we constructed chimeric HIV-1 vectors using CA isolated from B27/B57+ or control subjects. HIV-1 vectors containing B27/B57+-specific CA had increased sensitivity to TRIM5α but not to Mx2. Following exposure to those vectors, cells showed increased resistance against both TRIM5α-sensitive and -insensitive HIV-1 strains. Induction of the antiviral state did not require productive infection by the TRIM5α-sensitive virus, as shown using chemically inactivated virions. Depletion experiments revealed that TAK1 and Ubc13 were essential to the TRIM5α-dependent antiviral state. Accordingly, induction of the antiviral state was accompanied by the activation of NF-κB and AP-1 in THP-1 cells. Secretion of IFN-I was involved in the antiviral state in THP-1 cells, as shown using a receptor blocking antibody. This work identifies innate activation pathways that are likely to play a role in the natural resistance to HIV-1 progression in ECs.


Assuntos
Proteínas de Transporte/metabolismo , HIV-1/genética , Proteínas de Resistência a Myxovirus/metabolismo , Adulto , Antivirais , Fatores de Restrição Antivirais , Linfócitos T CD8-Positivos/imunologia , Capsídeo/metabolismo , Capsídeo/fisiologia , Epitopos de Linfócito T/imunologia , Feminino , Infecções por HIV/imunologia , Soropositividade para HIV , HIV-1/imunologia , Antígenos HLA-B/genética , Antígeno HLA-B27/genética , Humanos , Masculino , Linfócitos T Citotóxicos/imunologia , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Viremia , Replicação Viral/imunologia
7.
Virologie (Montrouge) ; 24(6): 369-380, 2020 Dec 01.
Artigo em Francês | MEDLINE | ID: mdl-33441289

RESUMO

In this review, we summarize recent advances in the knowledge of the biological functions of human TRIM5α, a cytoplasmic protein mostly known for its antiretroviral functions. In addition to directly targeting retroviral capsid cores, an inhibitory activity called "restriction", TRIM5α senses retroviruses and activates NF-κB and AP-1 signaling pathways, resulting in the production of type I interferon (IFN-I). The antiviral state resulting from the activation of these pathways includes the upregulation of other restriction factors, and is thought to be important for the control of HIV-1 in some patients. TRIM5α also targets the protease enzyme of several tick-borne flaviviruses, a family of viruses not closely related to retroviruses. In addition to these antiviral functions, TRIM5α promotes autophagy by interacting with key actors of this pathway, such as ULK1 and p62. TRIM5α may function as a selective autophagy receptor in some conditions. Altogether, our understanding of TRIM5α shows its potential for the development of medical applications in viral diseases and beyond.


Assuntos
Antivirais , HIV-1 , Fatores de Restrição Antivirais , Capsídeo , Proteínas de Transporte/genética , HIV-1/genética , Humanos , Retroviridae , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases
8.
PLoS Pathog ; 11(7): e1005050, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26181333

RESUMO

HIV-2 and SIVMAC are AIDS-causing, zoonotic lentiviruses that jumped to humans and rhesus macaques, respectively, from SIVSM-bearing sooty mangabey monkeys. Cross-species transmission events such as these sometimes necessitate virus adaptation to species-specific, host restriction factors such as TRIM5. Here, a new human restriction activity is described that blocks viruses of the SIVSM/SIVMAC/HIV-2 lineage. Human T, B, and myeloid cell lines, peripheral blood mononuclear cells and dendritic cells were 4 to >100-fold less transducible by VSV G-pseudotyped SIVMAC, HIV-2, or SIVSM than by HIV-1. In contrast, transduction of six epithelial cell lines was equivalent to that by HIV-1. Substitution of HIV-1 CA with the SIVMAC or HIV-2 CA was sufficient to reduce HIV-1 transduction to the level of the respective vectors. Among such CA chimeras there was a general trend such that CAs from epidemic HIV-2 Group A and B isolates were the most infectious on human T cells, CA from a 1° sooty mangabey isolate was the least infectious, and non-epidemic HIV-2 Group D, E, F, and G CAs were in the middle. The CA-specific decrease in infectivity was observed with either HIV-1, HIV-2, ecotropic MLV, or ALV Env pseudotypes, indicating that it was independent of the virus entry pathway. As2O3, a drug that suppresses TRIM5-mediated restriction, increased human blood cell transduction by SIVMAC but not by HIV-1. Nonetheless, elimination of TRIM5 restriction activity did not rescue SIVMAC transduction. Also, in contrast to TRIM5-mediated restriction, the SIVMAC CA-specific block occurred after completion of reverse transcription and the formation of 2-LTR circles, but before establishment of the provirus. Transduction efficiency in heterokaryons generated by fusing epithelial cells with T cells resembled that in the T cells, indicative of a dominant-acting SIVMAC restriction activity in the latter. These results suggest that the nucleus of human blood cells possesses a restriction factor specific for the CA of HIV-2/SIVMAC/SIVSM and that cross-species transmission of SIVSM to human T cells necessitated adaptation of HIV-2 to this putative restriction factor.


Assuntos
Antivirais/farmacologia , Capsídeo/microbiologia , HIV-2/efeitos dos fármacos , Leucócitos Mononucleares/virologia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Integração Viral/efeitos dos fármacos , Animais , Linhagem Celular , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/virologia , HIV-2/genética , HIV-2/imunologia , Humanos , Leucócitos Mononucleares/imunologia , Vírus da Imunodeficiência Símia/genética , Linfócitos T/efeitos dos fármacos , Linfócitos T/virologia
10.
Retrovirology ; 13: 19, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-27000403

RESUMO

BACKGROUND: The promyelocytic leukemia (PML) protein, a type I interferon (IFN-I)-induced gene product and a member of the tripartite motif (TRIM) family, modulates the transcriptional activity of viruses belonging to various families. Whether PML has an impact on the replication of HIV-1 has not been fully addressed, but recent studies point to its possible involvement in the restriction of HIV-1 in human cells and in the maintenance of transcriptional latency in human cell lines in which HIV-1 is constitutively repressed. We investigated further the restriction of HIV-1 and a related lentivirus, SIVmac, by PML in murine cells and in a lymphocytic human cell line. In particular, we studied the relevance of PML to IFN-I-mediated inhibition and the role of individual human isoforms. RESULTS: We demonstrate that both human PML (hPML) and murine PML (mPML) inhibit the early post-entry stages of the replication of HIV-1 and a related lentivirus, SIVmac. In addition, HIV-1 was transcriptionally silenced by mPML and by hPML isoforms I, II, IV and VI in MEFs. This PML-mediated transcriptional repression was attenuated in presence of the histone deacetylase inhibitor SAHA. In contrast, depletion of PML had no effect on HIV-1 gene expression in a human T cell line. PML was found to contribute to the inhibition of HIV-1 by IFN-I. Specifically, IFN-α and IFN-ß treatments of MEFs enhanced the PML-dependent inhibition of HIV-1 early replication stages. CONCLUSIONS: We show that PML can inhibit HIV-1 and other lentiviruses as part of the IFN-I-mediated response. The restriction takes place at two distinct steps, i.e. reverse transcription and transcription, and in an isoform-specific, cellular context-specific fashion. Our results support a model in which PML activates innate immune antilentiviral effectors. These data are relevant to the development of latency reversal-inducing pharmacological agents, since PML was previously proposed as a pharmacological target for such inhibitors. This study also has implications for the development of murine models of HIV-1.


Assuntos
HIV-1/imunologia , Interações Hospedeiro-Patógeno , Proteínas Nucleares/metabolismo , Vírus da Imunodeficiência Símia/imunologia , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Replicação Viral , Animais , Linhagem Celular , HIV-1/fisiologia , Humanos , Interferon Tipo I/metabolismo , Camundongos , Dados de Sequência Molecular , Proteína da Leucemia Promielocítica , Transcrição Reversa , Análise de Sequência de DNA , Vírus da Imunodeficiência Símia/fisiologia , Transcrição Gênica
11.
J Gen Virol ; 96(Pt 4): 874-886, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25502651

RESUMO

IFN-induced restriction factors can significantly affect the replicative capacity of retroviruses in mammals. TRIM5α (tripartite motif protein 5, isoform α) is a restriction factor that acts at early stages of the virus life cycle by intercepting and destabilizing incoming retroviral cores. Sensitivity to TRIM5α maps to the N-terminal domain of the retroviral capsid proteins. In several New World and Old World monkey species, independent events of retrotransposon-mediated insertion of the cyclophilin A (CypA)-coding sequence in the trim5 gene have given rise to TRIMCyp (also called TRIM5-CypA), a hybrid protein that is active against some lentiviruses in a species-specific fashion. In particular, TRIMCyp from the owl monkey (omkTRIMCyp) very efficiently inhibits human immunodeficiency virus type 1 (HIV-1). Previously, we showed that disrupting the integrity of microtubules (MTs) and of cytoplasmic dynein complexes partially rescued replication of retroviruses, including HIV-1, from restriction mediated by TRIM5α. Here, we showed that efficient restriction of HIV-1 by omkTRIMCyp was similarly dependent on the MT network and on dynein complexes, but in a context-dependent fashion. When omkTRIMCyp was expressed in human HeLa cells, restriction was partially counteracted by pharmacological agents targeting MTs or by small interfering RNA-mediated inhibition of dynein. The same drugs (nocodazole and paclitaxel) also rescued HIV-1 from restriction in cat CRFK cells, although to a lesser extent. Strikingly, neither nocodazole, paclitaxel nor depletion of the dynein heavy chain had a significant effect on the restriction of HIV-1 in an owl monkey cell line. These results suggested the existence of cell-specific functional interactions between MTs/dynein and TRIMCyp.


Assuntos
Proteínas de Transporte/farmacologia , Ciclofilina A/farmacologia , Dineínas/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Proteínas Recombinantes de Fusão/farmacologia , Animais , Aotidae , Gatos , Linhagem Celular , Linhagem Celular Tumoral , Citoplasma/efeitos dos fármacos , Citoplasma/virologia , Células HEK293 , Infecções por HIV/tratamento farmacológico , Células HeLa , Humanos
12.
J Virol ; 88(10): 5661-76, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24600008

RESUMO

UNLABELLED: The tripartite motif (TRIM) family of proteins includes the TRIM5α antiretroviral restriction factor. TRIM5α from many Old World and some New World monkeys can restrict the human immunodeficiency virus type 1 (HIV-1), while human TRIM5α restricts N-tropic murine leukemia virus (N-MLV). TRIM5α forms highly dynamic cytoplasmic bodies (CBs) that associate with and translocate on microtubules. However, the functional involvement of microtubules or other cytoskeleton-associated factors in the viral restriction process had not been shown. Here, we demonstrate the dependency of TRIM5α-mediated restriction on microtubule-mediated transport. Pharmacological disruption of the microtubule network using nocodazole or disabling it using paclitaxel (originally named taxol) decreased the restriction of N-MLV and HIV-1 by human or simian alleles of TRIM5α, respectively. In addition, pharmacological inhibition of dynein motor complexes using erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) and small interfering RNA-mediated depletion of the dynein heavy chain (DHC) similarly decreased TRIM5α-mediated restriction. The loss in restriction resulting from either the disassembly of microtubules or the disruption of dynein motor activity was seen for both endogenous and overexpressed TRIM5α and was not due to differences in protein stability or cell viability. Both nocodazole treatment and DHC depletion interfered with the dynamics of TRIM5α CBs, increasing their size and altering their intracellular localization. In addition, nocodazole, paclitaxel, and DHC depletion were all found to increase the stability of HIV-1 cores in infected cells, providing an alternative explanation for the decreased restriction. In conclusion, association with microtubules and the translocation activity of dynein motor complexes are required to achieve efficient restriction by TRIM5α. IMPORTANCE: The primate innate cellular defenses against infection by retroviruses include a protein named TRIM5α, belonging to the family of restriction factors. TRIM5α is present in the cytoplasm, where it can intercept incoming retroviruses shortly after their entry. How TRIM5α manages to be present at the appropriate subcytoplasmic location to interact with its target is unknown. We hypothesized that TRIM5α, either as a soluble protein or a high-molecular-weight complex (the cytoplasmic body), is transported within the cytoplasm by a molecular motor called the dynein complex, which is known to interact with and move along microtubules. Our results show that destructuring microtubules or crippling their function decreased the capacity of human or simian TRIM5α to restrict their retroviral targets. Inhibiting dynein motor activity, or reducing the expression of a key component of this complex, similarly affected TRIM5α-mediated restriction. Thus, we have identified specific cytoskeleton structures involved in innate antiretroviral defenses.


Assuntos
Proteínas de Transporte/metabolismo , Dineínas/metabolismo , HIV-1/imunologia , Vírus da Leucemia Murina/imunologia , Microtúbulos/metabolismo , Animais , Fatores de Restrição Antivirais , Transporte Biológico , Linhagem Celular , Humanos , Macaca mulatta , Proteínas/metabolismo , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases
13.
PLoS One ; 19(8): e0300491, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39150942

RESUMO

Replicons, derived from RNA viruses, are genetic constructs retaining essential viral enzyme genes while lacking key structural protein genes. Upon introduction into cells, the genes carried by the replicon RNA are expressed, and the RNA self-replicates, yet viral particle production does not take place. Typically, RNA replicons are transcribed in vitro and are then electroporated in cells. However, it would be advantageous for the replicon to be generated in cells following DNA transfection instead of RNA. In this study, a bacterial artificial chromosome (BAC) DNA encoding a SARS-CoV-2 replicon under control of a T7 promoter was transfected into HEK293T cells engineered to functionally express the T7 RNA polymerase (T7 RNAP). Upon transfection of the BAC DNA, we observed low, but reproducible expression of reporter proteins GFP and luciferase carried by this replicon. Expression of the reporter proteins required linearization of the BAC DNA prior to transfection. Moreover, expression occurred independently of T7 RNAP. Gene expression was also insensitive to remdesivir treatment, suggesting that it did not involve self-replication of replicon RNA. Similar results were obtained in highly SARS-CoV-2 infection-permissive Calu-3 cells. Strikingly, prior expression of the SARS-CoV-2 N protein boosted expression from transfected SARS-CoV-2 RNA replicon but not from the replicon BAC DNA. In conclusion, transfection of a large DNA encoding a coronaviral replicon led to reproducible replicon gene expression through an unidentified mechanism. These findings highlight a novel pathway toward replicon gene expression from transfected replicon cDNA, offering valuable insights for the development of methods for DNA-based RNA replicon applications.


Assuntos
Genes Reporter , Replicação do RNA , RNA Viral , Replicon , SARS-CoV-2 , Humanos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Cromossomos Artificiais Bacterianos/genética , COVID-19/virologia , COVID-19/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Regiões Promotoras Genéticas , Replicon/genética , Replicação do RNA/genética , RNA Viral/genética , RNA Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Transfecção , Proteínas Virais/genética , Proteínas Virais/metabolismo
14.
Retrovirology ; 10: 25, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23448277

RESUMO

BACKGROUND: HIV-1 is inhibited early after entry into cells expressing some simian orthologues of the tripartite motif protein family member TRIM5α. Mutants of the human orthologue (TRIM5αhu) can also provide protection against HIV-1. The host protein cyclophilin A (CypA) binds incoming HIV-1 capsid (CA) proteins and enhances early stages of HIV-1 replication by unknown mechanisms. On the other hand, the CA-CypA interaction is known to increase HIV-1 susceptibility to restriction by TRIM5α. Previously, the mutation V86M in the CypA-binding loop of HIV-1 CA was found to be selected upon serial passaging of HIV-1 in cells expressing Rhesus macaque TRIM5α (TRIM5αrh). The objectives of this study were (i) to analyze whether V86M CA allows HIV-1 to escape mutants of TRIM5αhu, and (ii) to characterize the role of CypA in the resistance to TRIM5α conferred by V86M. RESULTS: We find that in single-cycle HIV-1 vector transduction experiments, V86M confers partial resistance against R332G-R335G TRIM5αhu and other TRIM5αhu variable 1 region mutants previously isolated in mutagenic screens. However, V86M HIV-1 does not seem to be resistant to R332G-R335G TRIM5αhu in a spreading infection context. Strikingly, restriction of V86M HIV-1 vectors by TRIM5αhu mutants is mostly insensitive to the presence of CypA in infected cells. NMR experiments reveal that V86M alters CypA interactions with, and isomerisation of CA. On the other hand, V86M does not affect the CypA-mediated enhancement of HIV-1 replication in permissive human cells. Finally, qPCR experiments show that V86M increases HIV-1 transport to the nucleus of cells expressing restrictive TRIM5α. CONCLUSIONS: Our study shows that V86M de-couples the two functions associated with CA-CypA binding, i.e. the enhancement of restriction by TRIM5α and the enhancement of HIV-1 replication in permissive human cells. V86M enhances the early stages of HIV-1 replication in restrictive cells by improving nuclear import. In summary, our data suggest that HIV-1 escapes restriction by TRIM5α through the selective disruption of CypA-dependent, TRIM5α-mediated inhibition of nuclear import. However, V86M does not seem to relieve restriction of a spreading HIV-1 infection by TRIM5αhu mutants, underscoring context-specific restriction mechanisms.


Assuntos
Transporte Ativo do Núcleo Celular , Proteínas de Transporte/imunologia , Ciclofilina A/imunologia , Proteína do Núcleo p24 do HIV/metabolismo , HIV-1/imunologia , Mutação de Sentido Incorreto , Fatores de Restrição Antivirais , Proteínas de Transporte/metabolismo , Linhagem Celular , Ciclofilina A/metabolismo , Proteína do Núcleo p24 do HIV/genética , HIV-1/genética , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases
15.
J Virol Methods ; 322: 114835, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37871706

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19. Though many COVID-19 vaccines have been developed, most of them are delivered via intramuscular injection and thus confer relatively weak mucosal immunity against the natural infection. Virus-Like Particles (VLPs) are self-assembled nanostructures composed of key viral structural proteins, that mimic the wild-type virus structure but are non-infectious and non-replicating due to the lack of viral genetic material. In this study, we efficiently generated SARS-CoV-2 VLPs by co-expressing the four SARS-CoV-2 structural proteins, specifically the membrane (M), small envelope (E), spike (S) and nucleocapsid (N) proteins. We show that these proteins are essential and sufficient for the efficient formation and release of SARS-CoV-2 VLPs. Moreover, we used lentiviral vectors to generate human cell lines that stably produce VLPs. Because VLPs can bind to the virus natural receptors, hence leading to entry into cells and viral antigen presentation, this platform could be used to develop novel vaccine candidates that are delivered intranasally.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , SARS-CoV-2/genética , Vacinas contra COVID-19 , Anticorpos Antivirais , Nucleocapsídeo/metabolismo , Glicoproteína da Espícula de Coronavírus , Mamíferos/metabolismo
16.
Toxins (Basel) ; 14(4)2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35448871

RESUMO

Ten Amaryllidaceae alkaloids (AAs) were isolated for the first time from Pancratium maritimum collected in Calabria region, Italy. They belong to different subgroups of this family and were identified as lycorine, which is the main alkaloid, 9-O-demethyllycorine, haemanthidine, haemanthamine, 11-hydroxyvittatine, homolycorine, pancracine, obliquine, tazettine and vittatine. Haemanthidine was isolated as a scalar mixture of two 6-epimers, as already known also for other 6-hydroxycrinine alkaloids, but for the first time they were separated as 6,11-O,O'-di-p-bromobenzoyl esters. The evaluation of the cytotoxic and antiviral potentials of all isolated compounds was undertaken. Lycorine and haemanthidine showed cytotoxic activity on Hacat cells and A431 and AGS cancer cells while, pancracine exhibited selective cytotoxicity against A431 cells. We uncovered that in addition to lycorine and haemanthidine, haemanthamine and pancracine also possess antiretroviral abilities, inhibiting pseudotyped human immunodeficiency virus (HIV)−1 with EC50 of 25.3 µM and 18.5 µM respectively. Strikingly, all the AAs isolated from P. maritimum were able to impede dengue virus (DENV) replication (EC50 ranged from 0.34−73.59 µM) at low to non-cytotoxic concentrations (CC50 ranged from 6.25 µM to >100 µM). Haemanthamine (EC50 = 337 nM), pancracine (EC50 = 357 nM) and haemanthidine (EC50 = 476 nM) were the most potent anti-DENV inhibitors. Thus, this study uncovered new antiviral properties of P. maritimum isolated alkaloids, a significant finding that could lead to the development of new therapeutic strategies to fight viral infectious diseases.


Assuntos
Alcaloides , Antivirais , Alcaloides/farmacologia , Antivirais/farmacologia , Humanos , Itália , Extratos Vegetais/farmacologia
17.
Plants (Basel) ; 11(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36559555

RESUMO

Major threats to the human lifespan include cancer, infectious diseases, diabetes, mental degenerative conditions and also reduced agricultural productivity due to climate changes, together with new and more devastating plant diseases. From all of this, the need arises to find new biopesticides and new medicines. Plants and microorganisms are the most important sources for isolating new metabolites. Lampedusa Island host a rich contingent of endemic species and subspecies. Seven plant species spontaneously growing in Lampedusa, i.e., Atriplex halimus L. (Ap), Daucus lopadusanus Tineo (Dl), Echinops spinosus Fiori (Es) Glaucium flavum Crantz (Gf) Hypericum aegypticum L: (Ha), Periploca angustifolia Labill (Pa), and Prasium majus L. (Pm) were collected, assessed for their metabolite content, and evaluated for potential applications in agriculture and medicine. The HPLC-MS analysis of n-hexane (HE) and CH2Cl2 (MC) extracts and the residual aqueous phases (WR) showed the presence of several metabolites in both organic extracts. Crude HE and MC extracts from Dl and He significantly inhibited butyrylcholinesterase, as did WR from the extraction of Dl and Pa. HE and MC extracts showed a significant toxicity towards hepatocarcinoma Huh7, while Dl, Ha and Er HE extracts were the most potently cytotoxic to ileocecal colorectal adenocarcinoma HCT-8 cell lines. Most extracts showed antiviral activity. At the lowest concentration tested (1.56 µg/mL), Dl, Gf and Ap MC extracts inhibited betacoronavirus HCoV-OC43 infection by> 2 fold, while the n-hexane extract of Pm was the most potent. In addition, at 1.56 µg/mL, potent inhibition (>10 fold) of dengue virus was detected for Dl, Er, and Pm HE extracts, while Pa and Ap MC extracts dampened infections to undetectable levels. Regarding to phytotoxicity, MC extracts from Er, Ap and Pm were more effective in inhibiting tomato rootlet elongation; the same first two extracts also inhibited seed cress germination while its radicle elongation, due to high sensitivity, was affected by all the extracts. Es and Gf MC extracts also inhibited seed germination of Phelipanche ramosa. Thus, we have uncovered that many of these Lampedusa plants displayed promising biopesticide, antiviral, and biological properties.

18.
Nature ; 430(6999): 569-73, 2004 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-15243629

RESUMO

In Old World primates, TRIM5-alpha confers a potent block to human immunodeficiency virus type 1 (HIV-1) infection that acts after virus entry into cells. Cyclophilin A (CypA) binding to viral capsid protects HIV-1 from a similar activity in human cells. Among New World primates, only owl monkeys exhibit post-entry restriction of HIV-1 (ref. 1). Paradoxically, the barrier to HIV-1 in owl monkey cells is released by capsid mutants or drugs that disrupt capsid interaction with CypA. Here we show that knockdown of owl monkey CypA by RNA interference (RNAi) correlates with suppression of anti-HIV-1 activity. However, reintroduction of CypA protein to RNAi-treated cells did not restore antiviral activity. A search for additional RNAi targets unearthed TRIMCyp, an RNAi-responsive messenger RNA encoding a TRIM5-CypA fusion protein. TRIMCyp accounts for post-entry restriction of HIV-1 in owl monkeys and blocks HIV-1 infection when transferred to otherwise infectable human or rat cells. It seems that TRIMCyp arose after the divergence of New and Old World primates when a LINE-1 retrotransposon catalysed the insertion of a CypA complementary DNA into the TRIM5 locus. This is the first vertebrate example of a chimaeric gene generated by this mechanism of exon shuffling.


Assuntos
Aotidae/genética , Aotidae/virologia , Ciclofilina A/genética , Predisposição Genética para Doença/genética , Infecções por HIV/genética , Proteínas/genética , Retroelementos/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Ciclofilina A/metabolismo , Evolução Molecular , Éxons/genética , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética , Dados de Sequência Molecular , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ubiquitina-Proteína Ligases
19.
Virol Sin ; 35(4): 363-377, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32152893

RESUMO

Flaviviruses are a genus of mostly arthropod-borne RNA viruses that cause a range of pathologies in humans. Basic knowledge on flaviviruses is rapidly expanding, partly due to their status as frequent emerging or re-emerging pathogens. Flaviviruses include the dengue, Zika, West Nile, tick-borne encephalitis and yellow fever viruses (DENV, ZIKV, WNV, TBEV and YFV, respectively). As is the case with other families of viruses, the success of productive infection of human cells by flaviviruses depends in part on the antiviral activity of a heterogeneous group of cellular antiviral proteins called restriction factors. Restriction factors are the effector proteins of the cell-autonomous innate response against viruses, an immune pathway that also includes virus sensors as well as intracellular and extracellular signal mediators such as type I interferons (IFN-I). In this review, I summarize recent progress toward the identification and characterization of flavivirus restriction factors. In particular, I focus on IFI6, Schlafen 11, FMRP, OAS-RNase L, RyDEN, members of the TRIM family of proteins (TRIM5α, TRIM19, TRIM56, TRIM69 and TRIM79α) and a new mechanism of action proposed for viperin. Recent and future studies on this topic will lead to a more complete picture of the flavivirus restrictome, defined as the ensemble of cellular factors with demonstrated anti-flaviviral activity.


Assuntos
Flavivirus/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Replicação Viral , Animais , Interações Hospedeiro-Patógeno/genética , Humanos , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Camundongos , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/imunologia
20.
Viruses ; 13(1)2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375604

RESUMO

Tripartite-motif-containing protein 5 isoform α (TRIM5α) is a cytoplasmic antiretroviral effector upregulated by type I interferons (IFN-I). We previously showed that two points mutations, R332G/R335G, in the retroviral capsid-binding region confer human TRIM5α the capacity to target and strongly restrict HIV-1 upon overexpression of the mutated protein. Here, we used clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9-mediated homology-directed repair (HDR) to introduce these two mutations in the endogenous human TRIM5 gene. We found 6 out of 47 isolated cell clones containing at least one HDR-edited allele. One clone (clone 6) had both alleles containing R332G, but only one of the two alleles containing R335G. Upon challenge with an HIV-1 vector, clone 6 was significantly less permissive compared to unmodified cells, whereas the cell clones with monoallelic modifications were only slightly less permissive. Following interferon (IFN)-ß treatment, inhibition of HIV-1 infection in clone 6 was significantly enhanced (~40-fold inhibition). TRIM5α knockdown confirmed that HIV-1 was inhibited by the edited TRIM5 gene products. Quantification of HIV-1 reverse transcription products showed that inhibition occurred through the expected mechanism. In conclusion, we demonstrate the feasibility of potently inhibiting a viral infection through the editing of innate effector genes. Our results also emphasize the importance of biallelic modification in order to reach significant levels of inhibition by TRIM5α.


Assuntos
Edição de Genes , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/fisiologia , Linfócitos T/metabolismo , Linfócitos T/virologia , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Tropismo Viral/genética , Fatores de Restrição Antivirais , Sistemas CRISPR-Cas , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Interações Hospedeiro-Patógeno/genética , Humanos , Células Jurkat , RNA Guia de Cinetoplastídeos , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA