Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 110(20): 8140-5, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23630276

RESUMO

In recent years, the role played by the stromal microenvironment has been given growing attention in order to achieve a full understanding of cancer initiation and progression. Because cancer is a tissue-based disease, the integrity of tissue architecture is a major constraint toward cancer growth. Indeed, a large contribution of the natural resistance to cancer stems from stromal microenvironment components, the dysregulation of which can facilitate cancer occurrence. For instance, recent experimental evidence has highlighted the involvement of stromal cells in ovarian carcinogenesis, as epitomized by ovarian xenografts obtained by a double KO of the murine Dicer and Pten genes. Likewise, we reported the role of an ancient extracellular RNase, called Ribonuclease T2 (RNASET2), within the ovarian stromal microenvironment. Indeed, hyperexpression of RNASET2 is able to control tumorigenesis by recruiting macrophages (mostly of the anticancer M1 subtype) at the tumor sites. We present biological data obtained by RNASET2 silencing in the poorly tumorigenetic and highly RNASET2-expressing human OVCAR3 cell line. RNASET2 knockdown was shown to stimulate in vivo tumor growth early after microinjection of OVCAR3 cells in nude mice. Moreover, we have investigated by molecular profiling the in vivo expression signature of human and mouse cell xenografts and disclosed the activation of pathways related to activation of the innate immune response and modulation of ECM components. Finally, we provide evidence for a role of RNASET2 in triggering an in vitro chemotactic response in macrophages. These results further highlight the critical role played by the microenvironment in RNASET2-mediated ovarian tumor suppression, which could eventually contribute to better clarify the pathogenesis of this disease.


Assuntos
Endorribonucleases/fisiologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Animais , Linhagem Celular Tumoral , Quimiotaxia , Endorribonucleases/genética , Feminino , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Inativação Gênica , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Nus , Transplante de Neoplasias , Filogenia , Reação em Cadeia da Polimerase , Células U937
2.
Proc Natl Acad Sci U S A ; 108(3): 1104-9, 2011 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-21189302

RESUMO

A recent body of evidence indicates an active role for stromal (mis)-regulation in the progression of neoplasias. Within this conceptual framework, genes belonging to the growing but still poorly characterized class of tumor antagonizing/malignancy suppressor genes (TAG/MSG) seem to play a crucial role in the regulation of the cross-talk between stromal and epithelial cells by controlling malignant growth in vivo without affecting any cancer-related phenotype in vitro. Here, we have functionally characterized the human RNASET2 gene, which encodes the first human member of the widespread Rh/T2/S family of extracellular RNases and was recently found to be down-regulated at the transcript level in several primary ovarian tumors or cell lines and in melanoma cell lines. Although we could not detect any activity for RNASET2 in several functional in vitro assays, a remarkable control of ovarian tumorigenesis could be detected in vivo. Moreover, the control of ovarian tumorigenesis mediated by this unique tumor suppressor gene occurs through modification of the cellular microenvironment and the induction of immunocompetent cells of the monocyte/macrophage lineage. Taken together, the data presented in this work strongly indicate RNASET2 as a previously unexplored member of the growing family of tumor-antagonizing genes.


Assuntos
Macrófagos/imunologia , Neoplasias Ovarianas/genética , Ribonucleases/imunologia , Proteínas Supressoras de Tumor/imunologia , Análise de Variância , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Imuno-Histoquímica , Hibridização In Situ , Técnicas In Vitro , Camundongos , Camundongos Nus , Neoplasias Ovarianas/patologia , Ribonucleases/genética , Proteínas Supressoras de Tumor/genética , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Int J Cancer ; 133(3): 612-23, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23335100

RESUMO

Survivin protein is an attractive candidate for cancer immunotherapy since it is abundantly expressed in most common human cancers and mostly absent in normal adult tissues. Malignant mesothelioma (MM) is a deadly cancer associated with asbestos or erionite exposure for which no successful therapies are currently available. In this study, we evaluated the therapeutic efficacy of a novel survivin-based vaccine by subcutaneous or intraperitoneum injection of BALB/c mice with murine fiber-induced MM tumor cells followed by vaccination with recombinant Fowlpox virus replicons encoding survivin. Vaccination generated significant immune responses in both models, leading to delayed tumor growth and improved animal survival. Flow cytometry and immunofluorescence analyses of tumors from vaccinated mice showed CD8(+) T-cell infiltration, and real-time PCR demonstrated increased mRNA and protein levels of immunostimulatory cytokines. Analyses of survivin peptide-pulsed spleen and lymph node cells from vaccinated mice using ELISPOT and intracellular cytokine staining confirmed antigen-specific, interferon-γ-producing CD8(+) T-cell responses. In addition pentamer-based flow cytometry showed that vaccination generated survivin-specific CD8(+) T cells. Importantly, vaccination did not affect fertility or induce autoimmune abnormalities in mice. Our results demonstrate that vaccination with recombinant Fowlpox expressing survivin improves T-cell responses against aggressive MM tumors and may form the basis for promising clinical applications.


Assuntos
Vacinas Anticâncer/imunologia , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/imunologia , Neoplasias Pulmonares , Mesotelioma , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Feminino , Vírus da Varíola das Aves Domésticas/genética , Vírus da Varíola das Aves Domésticas/imunologia , Humanos , Imunoterapia , Interferon gama/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/terapia , Linfonodos/imunologia , Mesotelioma/imunologia , Mesotelioma/prevenção & controle , Mesotelioma/terapia , Mesotelioma Maligno , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Baço/imunologia , Survivina , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA