Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Phys Rev Lett ; 120(21): 211804, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29883176

RESUMO

The Majorana Demonstrator is an ultralow-background experiment searching for neutrinoless double-beta decay in ^{76}Ge. The heavily shielded array of germanium detectors, placed nearly a mile underground at the Sanford Underground Research Facility in Lead, South Dakota, also allows searches for new exotic physics. Free, relativistic, lightly ionizing particles with an electrical charge less than e are forbidden by the standard model but predicted by some of its extensions. If such particles exist, they might be detected in the Majorana Demonstrator by searching for multiple-detector events with individual-detector energy depositions down to 1 keV. This search is background-free, and no candidate events have been found in 285 days of data taking. New direct-detection limits are set for the flux of lightly ionizing particles for charges as low as e/1000.

2.
Phys Rev Lett ; 120(13): 132502, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29694188

RESUMO

The Majorana Collaboration is operating an array of high purity Ge detectors to search for neutrinoless double-ß decay in ^{76}Ge. The Majorana Demonstrator comprises 44.1 kg of Ge detectors (29.7 kg enriched in ^{76}Ge) split between two modules contained in a low background shield at the Sanford Underground Research Facility in Lead, South Dakota. Here we present results from data taken during construction, commissioning, and the start of full operations. We achieve unprecedented energy resolution of 2.5 keV FWHM at Q_{ßß} and a very low background with no observed candidate events in 9.95 kg yr of enriched Ge exposure, resulting in a lower limit on the half-life of 1.9×10^{25} yr (90% C.L.). This result constrains the effective Majorana neutrino mass to below 240-520 meV, depending on the matrix elements used. In our experimental configuration with the lowest background, the background is 4.0_{-2.5}^{+3.1} counts/(FWHM t yr).

3.
Phys Rev Lett ; 118(16): 161801, 2017 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-28474933

RESUMO

We present new limits on exotic keV-scale physics based on 478 kg d of Majorana Demonstrator commissioning data. Constraints at the 90% confidence level are derived on bosonic dark matter (DM) and solar axion couplings, Pauli exclusion principle violating (PEPV) decay, and electron decay using monoenergetic peak signal limits above our background. Our most stringent DM constraints are set for 11.8 keV mass particles, limiting g_{Ae}<4.5×10^{-13} for pseudoscalars and (α^{'}/α)<9.7×10^{-28} for vectors. We also report a 14.4 keV solar axion coupling limit of g_{AN}^{eff}×g_{Ae}<3.8×10^{-17}, a 1/2ß^{2}<8.5×10^{-48} limit on the strength of PEPV electron transitions, and a lower limit on the electron lifetime of τ_{e}>1.2×10^{24} yr for e^{-}→ invisible.

4.
Eur Phys J C Part Fields ; 82(3): 226, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310515

RESUMO

P-type point contact (PPC) HPGe detectors are a leading technology for rare event searches due to their excellent energy resolution, low thresholds, and multi-site event rejection capabilities. We have characterized a PPC detector's response to α particles incident on the sensitive passivated and p + surfaces, a previously poorly-understood source of background. The detector studied is identical to those in the Majorana Demonstrator experiment, a search for neutrinoless double-beta decay ( 0 ν ß ß ) in 76 Ge. α decays on most of the passivated surface exhibit significant energy loss due to charge trapping, with waveforms exhibiting a delayed charge recovery (DCR) signature caused by the slow collection of a fraction of the trapped charge. The DCR is found to be complementary to existing methods of α identification, reliably identifying α background events on the passivated surface of the detector. We demonstrate effective rejection of all surface α events (to within statistical uncertainty) with a loss of only 0.2% of bulk events by combining the DCR discriminator with previously-used methods. The DCR discriminator has been used to reduce the background rate in the 0 ν ß ß region of interest window by an order of magnitude in the Majorana Demonstrator  and will be used in the upcoming LEGEND-200 experiment.

5.
J Exp Med ; 182(4): 973-82, 1995 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-7561700

RESUMO

Bone marrow stromal cells promote B cell development involving recombinase gene-directed rearrangement of the immunoglobulin genes. We observed that the stromal cell-derived cytokine interleukin 7 (IL-7) enhances the expression of CD19 molecules on progenitor B-lineage cells in human bone marrow samples and downregulates the expression of terminal deoxynucleotidyl transferase (TdT) and the recombinase-activating genes RAG-1 and RAG-2. Initiation of the TdT downregulation on the first day of treatment, CD19 upregulation during the second day, and RAG-1 and RAG-2 downmodulation during the third day implied a cascade of IL-7 effects. While CD19 ligation by divalent antibodies had no direct effect on TdT or RAG gene expression, CD19 cross-linkage complete blocked the IL-7 downregulation of RAG expression without affecting the earlier TdT response. These results suggest that signals generated through CD19 and the IL-7 receptor could modulate immunoglobulin gene rearrangement and repertoire diversification during the early stages of B cell differentiation.


Assuntos
Antígenos CD19/metabolismo , Linfócitos B/efeitos dos fármacos , DNA Nucleotidiltransferases/genética , Proteínas de Ligação a DNA , Regulação da Expressão Gênica/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Proteínas de Homeodomínio , Interleucina-7/farmacologia , Sequência de Bases , Células da Medula Óssea , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , DNA Nucleotidilexotransferase/biossíntese , Regulação para Baixo/efeitos dos fármacos , Citometria de Fluxo , Humanos , Dados de Sequência Molecular , Proteínas Nucleares , Biossíntese de Proteínas , Regulação para Cima/efeitos dos fármacos , VDJ Recombinases
6.
Leukemia ; 20(7): 1254-60, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16642049

RESUMO

The Insulin-like growth factor-1 receptor (IGF-1R) is overexpressed in a variety of tumors including breast, prostate and myeloma. Thus, IGF-1R and its downstream signaling effectors are good candidates for molecular-based targeted antitumor therapies. Indeed, protein inhibitors of IGF-1R signaling and IGF-1R blocking antibodies are undergoing clinical trials. Herein, the molecular basis for antibody-mediated IGF-1R signal inhibition has been investigated in a hematopoietic cell line model, FDC-P1, that has been rendered interleukin-3 independent in a ligand-dependent manner through retroviral-mediated expression of IGF-1R (FD/IGF-1R). Furthermore, the ability of an anti-IGF-1R antibody to synergize with signal-transduction pathway inhibitors and induce apoptosis was determined. The alphaIGF-1R antibody, A12, was capable of arresting IGF-1 or insulin-induced FD/IGF-1R cell proliferation in the G1 phase of the cell cycle and resulted in apoptotic induction. A12 effectiveness could be potentiated through combination treatment with small molecule inhibitors of the Ras/Raf/MEK/ERK or PI3K/Akt/mTOR pathways. These results validate the use of the FD/IGF-1R cells to evaluate the effectiveness and mechanisms of targeted IGF-1R therapeutic strategies.


Assuntos
Anticorpos Monoclonais/farmacologia , Células-Tronco Hematopoéticas/citologia , Receptor IGF Tipo 1/imunologia , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais/fisiologia , Animais , Especificidade de Anticorpos , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , Linhagem Celular Transformada , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fase G1/efeitos dos fármacos , Fase G1/fisiologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/enzimologia , Imunoterapia , Fator de Crescimento Insulin-Like I/farmacologia , Leucemia/terapia , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fase S/efeitos dos fármacos , Fase S/fisiologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR , Quinases raf/metabolismo
7.
Leukemia ; 19(1): 98-102, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15496972

RESUMO

Bone marrow stromal cells are essential for the differentiation, survival and proliferation of normal and leukemic human B-lineage cells. Leukemic cells require stromal cell support for optimal proliferation and apoptotic resistance. Stromal cell contact can promote resistance to chemotherapeutic agents. In this study, we have made use of small molecular weight inhibitors and an established stromal cell-dependent pre-B-ALL cell line, BLIN-2, to investigate the role of the MAP kinase, PI3K/Akt, JAK/STAT and mTOR pathways in the promotion of leukemic cell growth in the presence of stromal cell support. Treatment with PI3K+JAK, PI3K+MEK, or MEK+JAK inhibitor combinations resulted in an inhibition of proliferation as measured by DNA synthesis. However, only inhibition of both PI3K and MEK or both mTOR and MEK resulted in a dramatic increase in the number of annexinV(+)/PI(+) apoptotic events within a 24 h period. Our data suggest that stromal cell-mediated apoptotic protection in B-lineage ALL is mediated by PI3K/mTOR and MEK via a synergistic mechanism(s).


Assuntos
Apoptose , MAP Quinase Quinase Quinases/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais , Células Estromais/citologia , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Humanos , MAP Quinase Quinase Quinases/antagonistas & inibidores , Serina-Treonina Quinases TOR
8.
Leukemia ; 17(12): 2454-9, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14562113

RESUMO

Infant acute lymphoblastic leukemia (ALL) is frequently characterized by the t(4;11)(q21;q23) cytogenetic abnormality encoding the MLL/AF4 oncogene, increased HOX gene expression and a pro-B/monocytoid phenotype. We have previously established a novel MLL/AF4-positive cell line, B-lineage 3 (BLIN-3), which retains several features of normal B-lineage development (functional Ig gene rearrangement and apoptotic sensitivity to stromal cell withdrawal) not generally observed in infant ALL. We now use microarray analysis to identify patterns of gene expression in BLIN-3 that may modulate MLL/AF4 oncogenesis and contribute to the retention of normal B-lineage developmental characteristics. Comparison of 6815 expressed genes in BLIN-3 with published microarray data on leukemic blasts from t(4;11) patients indicated that BLIN-3 was unique in lacking the expression of certain HOX-A cluster genes. These results were validated by RT-PCR showing no expression of HOX A7 or HOX A9 in BLIN-3. A HOX C8 promoter reporter was active in BLIN-3, indicating that lack of HOX gene expression in BLIN-3 was not due to a nonfunctional MLL/AF4. Our results suggest that B-lineage development can proceed in t(4;11) leukemic blasts in the absence of HOX-A gene expression.


Assuntos
Linfócitos B/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Homeodomínio/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proto-Oncogenes , Fatores de Transcrição , Linfócitos B/patologia , Linhagem Celular Tumoral , Linhagem da Célula , Regulação Leucêmica da Expressão Gênica , Histona-Lisina N-Metiltransferase , Humanos , Lactente , Proteína de Leucina Linfoide-Mieloide , Análise de Sequência com Séries de Oligonucleotídeos , Fosfoproteínas/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/fisiopatologia , Regiões Promotoras Genéticas , Fatores de Elongação da Transcrição
9.
Leukemia ; 14(12): 2095-102, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11187898

RESUMO

The Notch genes encode a conserved family of receptors that influence developmental fate in many species. Prior studies have indicated that Notch-1 and Notch-2 signaling influence the development of hematopoietic stems cells and thymocytes, but little is known regarding Notch expression and function in B-lineage cells. We analyzed the expression of Notch receptors and Notch ligands in human B-lineage cells and bone marrow (BM) stromal cells. Notch-1 mRNA and protein is expressed throughout normal B cell development and in leukemic B-lineage cells. In contrast, Notch-2 expression is limited to pre-B cells expressing low levels of surface mu. The Notch ligand Delta is expressed in BM B-lineage cells. The Notch ligand Jagged-1 is not expressed in B-lineage cells, but is expressed in BM stromal cells. These results suggest a model wherein lateral signaling between Notch and Delta on B-lineage cells and/or Notch/Jagged-1 interactions between B-lineage cells and BM stromal cells may regulate human B cell development.


Assuntos
Linfócitos B/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Superfície Celular/metabolismo , Fatores de Transcrição , Animais , Sequência de Bases , Linhagem da Célula , Primers do DNA , Citometria de Fluxo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Receptor Notch1 , Receptor Notch2 , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
10.
Leukemia ; 18(2): 189-218, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14737178

RESUMO

The roles of the JAK/STAT, Raf/MEK/ERK and PI3K/Akt signal transduction pathways and the BCR-ABL oncoprotein in leukemogenesis and their importance in the regulation of cell cycle progression and apoptosis are discussed in this review. These pathways have evolved regulatory proteins, which serve to limit their proliferative and antiapoptotic effects. Small molecular weight cell membrane-permeable drugs that target these pathways have been developed for leukemia therapy. One such example is imatinib mesylate, which targets the BCR-ABL kinase as well as a few structurally related kinases. This drug has proven to be effective in the treatment of CML patients. However, leukemic cells have evolved mechanisms to become resistant to this drug. A means to combat drug resistance is to target other prominent signaling components involved in the pathway or to inhibit BCR-ABL by other mechanisms. Treatment of imatinib-resistant leukemia cells with drugs that target Ras (farnysyl transferase inhibitors) or with the protein destabilizer geldanamycin has proven to be a means to inhibit the growth of resistant cells. This review will tie together three important signal transduction pathways involved in the regulation of hematopoietic cell growth and indicate how their expression is dysregulated by the BCR-ABL oncoprotein.


Assuntos
Ciclo Celular/fisiologia , Leucemia/etiologia , Transdução de Sinais/fisiologia , Animais , Apoptose , Proteínas de Fusão bcr-abl/fisiologia , Humanos , Leucemia/metabolismo , Leucemia/patologia , Proteínas Quinases/metabolismo , Proteínas Quinases/fisiologia , Receptores de Citocinas/metabolismo
11.
Leukemia ; 17(12): 2358-82, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14562120

RESUMO

Novel approaches have been designed to treat leukemia based on our understanding of the genetic and biochemical lesions present in different malignancies. This meeting report summarizes some of the recent advances in leukemia treatment. Based on the discoveries of cellular oncogenes, chromosomal translocations, monoclonal antibodies, multidrug resistance pumps, signal transduction pathways, genomics/proteonomic approaches to clinical diagnosis and mutations in biochemical pathways, clinicians and basic scientists have been able to identify the particular genetic mutations and signal transduction pathways involved as well as design more appropriate treatments for the leukemia patient. This meeting report discusses these exciting new therapies and the results obtained from ongoing clinical trials. Furthermore, rational approaches to treat complications of tumor lysis syndrome by administration of the recombinant urate oxidase protein, also known as rasburicase, which corrects the biochemical defect present in humans, were discussed. Clearly, over the past 25 years, molecular biology and biotechnology has provided the hematologist/oncologist novel bullets in their arsenal that will allow treatment by design in leukemia.


Assuntos
Antineoplásicos/uso terapêutico , Leucemia/tratamento farmacológico , Leucemia/fisiopatologia , Oncologia/tendências , Humanos
12.
Ann N Y Acad Sci ; 764: 242-60, 1995 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-7486531

RESUMO

The ability to respond to antigen develops in a programmed fashion during ontogeny. In human, "fetal" immunoglobulin gene segment utilization appears biased towards a small set of evolutionarily conserved V gene segments. Many of these gene segments are also used in antibodies with antigen specificities that do not arise until after infancy. The human fetus primarily regulates the diversity of the antibody repertoire through control of the H (heavy) chain CDR 3, which is generated by VDJ joining and forms the center of the antigen-binding site. Molecular modeling suggests that limitations in the length and composition of fetal CDR 3 intervals result in antibodies that contain a relatively "flat" antigen-binding surface that could serve to maximize the number of different interactions possible between the antibody and potential antigens. We propose that these limitations in the sequence and structure of H chain CDR 3 contribute to the low affinity and multireactivity of fetal antibody repertoires. The specific mechanisms used to generate a restricted fetal repertoire appear to differ between human and mouse. Nevertheless, included in the final products of both human and mouse fetal B cells will be antibodies that are quite homologous in composition and structure. The precise role that these antibodies play in the development of immunocompetence remains to be elucidated.


Assuntos
Diversidade de Anticorpos/genética , Regulação da Expressão Gênica no Desenvolvimento , Rearranjo Gênico do Linfócito B , Genes de Imunoglobulinas , Região Variável de Imunoglobulina/genética , Animais , Autoimunidade , Sítios de Ligação de Anticorpos , Evolução Molecular , Sangue Fetal/imunologia , Idade Gestacional , Humanos , Sistema Imunitário/embriologia , Sistema Imunitário/crescimento & desenvolvimento , Cadeias kappa de Imunoglobulina/genética , Fígado/citologia , Fígado/embriologia , Camundongos , Polissacarídeos Bacterianos/imunologia
13.
Leukemia ; 28(1): 15-33, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23778311

RESUMO

Glycogen synthase kinase-3 (GSK-3) is well documented to participate in a complex array of critical cellular processes. It was initially identified in rat skeletal muscle as a serine/threonine kinase that phosphorylated and inactivated glycogen synthase. This versatile protein is involved in numerous signaling pathways that influence metabolism, embryogenesis, differentiation, migration, cell cycle progression and survival. Recently, GSK-3 has been implicated in leukemia stem cell pathophysiology and may be an appropriate target for its eradication. In this review, we will discuss the roles that GSK-3 plays in hematopoiesis and leukemogenesis as how this pivotal kinase can interact with multiple signaling pathways such as: Wnt/ß-catenin, phosphoinositide 3-kinase (PI3K)/phosphatase and tensin homolog (PTEN)/Akt/mammalian target of rapamycin (mTOR), Ras/Raf/MEK/extracellular signal-regulated kinase (ERK), Notch and others. Moreover, we will discuss how targeting GSK-3 and these other pathways can improve leukemia therapy and may overcome therapeutic resistance. In summary, GSK-3 is a crucial regulatory kinase interacting with multiple pathways to control various physiological processes, as well as leukemia stem cells, leukemia progression and therapeutic resistance. GSK-3 and Wnt are clearly intriguing therapeutic targets.


Assuntos
Carcinogênese , Quinase 3 da Glicogênio Sintase/metabolismo , Hematopoese , Leucemia/patologia , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Humanos , Leucemia/enzimologia , Leucemia/metabolismo , Leucemia/terapia
15.
Leukemia ; 23(1): 25-42, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18800146

RESUMO

Since the discovery of leukemic stem cells (LSCs) over a decade ago, many of their critical biological properties have been elucidated, including their distinct replicative properties, cell surface phenotypes, their increased resistance to chemotherapeutic drugs and the involvement of growth-promoting chromosomal translocations. Of particular importance is their ability to transfer malignancy to non-obese diabetic-severe combined immunodeficient (NOD-SCID) mice. Furthermore, numerous studies demonstrate that acute myeloid leukemia arises from mutations at the level of stem cell, and chronic myeloid leukemia is also a stem cell disease. In this review, we will evaluate the main characteristics of LSCs elucidated in several well-documented leukemias. In addition, we will discuss points of therapeutic intervention. Promising therapeutic approaches include the targeting of key signal transduction pathways (for example, PI3K, Rac and Wnt) with small-molecule inhibitors and specific cell surface molecules (for example, CD33, CD44 and CD123), with effective cytotoxic antibodies. Also, statins, which are already widely therapeutically used for a variety of diseases, show potential in targeting LSCs. In addition, drugs that inhibit ATP-binding cassette transporter proteins are being extensively studied, as they are important in drug resistance-a frequent characteristic of LSCs. Although the specific targeting of LSCs is a relatively new field, it is a highly promising battleground that may reveal the Holy Grail of cancer therapy.


Assuntos
Leucemia/tratamento farmacológico , Leucemia/patologia , Células-Tronco Neoplásicas/patologia , Sistemas de Liberação de Medicamentos/métodos , Humanos , Leucemia/etiologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Resultado do Tratamento
16.
Leukemia ; 22(6): 1161-9, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18337761

RESUMO

The homeobox (Hox) gene family encodes a group of transcription factors preferentially expressed during embryonic development and hematopoiesis. Deregulation of Hox gene expression is frequently associated with acute leukemia. HoxA9 is the most commonly overexpressed Hox gene in acute leukemia. However, little is known regarding specific pathways regulated by HoxA9 that promote the growth and survival of leukemic cells. We have generated a conditional model of HoxA9 activity in the stromal cell dependent, HoxA9 negative, pre-B-cell line B-lineage-2 (BLIN-2). Conditional HoxA9 activation in BLIN-2 resulted in increased proliferation in the presence and absence of stromal cell support. Stimulation of HoxA9 activity resulted in increased expression of the c-Myb transcription factor and induction of insulin-like growth factor-1 receptor (IGF-1R) surface expression. HoxA9-mediated proliferative effects in BLIN-2 cells were abrogated when the cells were treated with specific IGF-1R tyrosine kinase inhibitors or with an IGF-1R mAb (A12). IGF-1R expression correlated with endogenous HoxA9 expression in a small panel of mixed lineage leukemia (MLL)/AF4 cell lines. siRNA knockdown of endogenous HoxA9 expression in the MLL/AF4-positive cell line RS4;11 resulted in loss of IGF-1R expression. These data indicate that HoxA9 overexpression induces IGF-1R expression and subsequently promotes leukemic cell growth.


Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , Proteínas de Homeodomínio/fisiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Receptor IGF Tipo 1/genética , Anticorpos Monoclonais/farmacologia , Southern Blotting , Western Blotting , Proliferação de Células , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Imunoprecipitação , Fator de Crescimento Insulin-Like I/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Fosforilação , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Proteínas Proto-Oncogênicas c-myc , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Receptor IGF Tipo 1/antagonistas & inibidores , Retroviridae/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Estromais/metabolismo , Células Tumorais Cultivadas
17.
Leukemia ; 22(4): 708-22, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18337766

RESUMO

The Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways are frequently activated in leukemia and other hematopoietic disorders by upstream mutations in cytokine receptors, aberrant chromosomal translocations as well as other genetic mechanisms. The Jak2 kinase is frequently mutated in many myeloproliferative disorders. Effective targeting of these pathways may result in suppression of cell growth and death of leukemic cells. Furthermore it may be possible to combine various chemotherapeutic and antibody-based therapies with low molecular weight, cell membrane-permeable inhibitors which target the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to ultimately suppress the survival pathways, induce apoptosis and inhibit leukemic growth. In this review, we summarize how suppression of these pathways may inhibit key survival networks important in leukemogenesis and leukemia therapy as well as the treatment of other hematopoietic disorders. Targeting of these and additional cascades may also improve the therapy of chronic myelogenous leukemia, which are resistant to BCR-ABL inhibitors. Furthermore, we discuss how targeting of the leukemia microenvironment and the leukemia stem cell are emerging fields and challenges in targeted therapies.


Assuntos
Apoptose/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Leucemia/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Humanos , Leucemia/patologia
18.
Leukemia ; 22(4): 686-707, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18337767

RESUMO

Mutations and chromosomal translocations occur in leukemic cells that result in elevated expression or constitutive activation of various growth factor receptors and downstream kinases. The Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways are often activated by mutations in upstream genes. The Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways are regulated by upstream Ras that is frequently mutated in human cancer. Recently, it has been observed that the FLT-3 and Jak kinases and the phosphatase and tensin homologue deleted on chromosome 10 (PTEN) phosphatase are also frequently mutated or their expression is altered in certain hematopoietic neoplasms. Many of the events elicited by the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways have direct effects on survival pathways. Aberrant regulation of the survival pathways can contribute to uncontrolled cell growth and lead to leukemia. In this review, we describe the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT signaling cascades and summarize recent data regarding the regulation and mutation status of these pathways and their involvement in leukemia.


Assuntos
Leucemia/etiologia , Transdução de Sinais , Humanos , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo
19.
Eur J Immunol ; 28(10): 3362-70, 1998 10.
Artigo em Inglês | MEDLINE | ID: mdl-9808206

RESUMO

Genes encoding the heavy chain portion of immunoglobulin molecules arise from the combinatorial association of V, D and J gene segments, which occurs during discrete stages of B lineage development in the bone marrow. Recently, V(H) replacement, a form of receptor editing, has been described, in which the variable region of an existing VDJ(H) rearrangement is replaced by another V(H) gene segment in a recombination event believed to involve an embedded heptamer within the coding region of the V(H). Studies of transgenic mice with "knocked-in" VDJ(H) genes encoding anti-DNA specificity have demonstrated that receptor editing of the heavy chain is one mechanism by which autoreactive B cell receptors can be modified. Another mouse, the "quasi-monoclonal", which encodes a "knocked-in" VDJ(H) for the hapten NP also contains B lineage cells that undergo V(H) replacement. This suggests that V(H) replacement may play a role in the normal diversification of the antibody repertoire. Using a ligation-mediated PCR assay, we have identified V(QM) double-stranded DNA breaks indicative of V(H) replacement intermediates from bone marrow and splenic B lineage cells of quasi-monoclonal mice in the absence of immunization. V(QM) to J558 recombination deletion products consistent with V(H) replacement were also detected in both the bone marrow and spleen of non-immunized quasi-monoclonal mice. Moreover, RAG-1 transcripts were detected in the spleen. These data suggest that V(H) replacement can be part of the mechanism(s) used by B lineage cells to generate diversity throughout B lineage development, including later stages occurring in secondary lymphoid tissues.


Assuntos
Medula Óssea/imunologia , Rearranjo Gênico do Linfócito B , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Baço/imunologia , Animais , Antígenos de Diferenciação/biossíntese , Sequência de Bases , Dano ao DNA , DNA Complementar , Expressão Gênica , Genes de Imunoglobulinas , Proteínas de Homeodomínio/genética , Idiótipos de Imunoglobulinas , Imunoglobulina M/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Reação em Cadeia da Polimerase
20.
Dev Immunol ; 5(3): 215-22, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-9851361

RESUMO

The recombination activating genes RAG-1 and RAG-2 are highly conserved throughout evolution and are necessary and essential for the DNA rearrangement of antigen-receptor gene segments. These convergently transcribed genes are expressed primarily by developing B and T lineage cells. In addition, recent data suggest that the RAG locus can be reactivated in mouse germinal center B cells. Despite these well-defined patterns of expression, little is known about mechanism(s) regulating transcription of the RAG locus. Experiments with a mouse fibroblast line stably transfected with a genomic fragment of the RAG locus suggest that the intergenic region between RAG-1 and RAG-2 may contain information modulating RAG transcription. In order to begin testing this hypothesis, we have sequenced the 7.0-kb RAG intergenic region of the mouse. The sequence did not contain open reading frames larger than 60 amino acids. Analysis with GCG software identified several potential transcription-factor binding sequences within this region. Many of these are associated with transcriptional regulation of the Ig locus.


Assuntos
Regiões 3' não Traduzidas/genética , Proteínas de Ligação a DNA/genética , Genes RAG-1 , Análise de Sequência de DNA , Animais , Sequência de Bases , Regulação da Expressão Gênica , Camundongos , Dados de Sequência Molecular , Mapeamento por Restrição , Fatores de Transcrição , Transcrição Gênica , Truta/genética , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA