Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Nature ; 613(7944): 449-459, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36653564

RESUMO

River networks represent the largest biogeochemical nexus between the continents, ocean and atmosphere. Our current understanding of the role of rivers in the global carbon cycle remains limited, which makes it difficult to predict how global change may alter the timing and spatial distribution of riverine carbon sequestration and greenhouse gas emissions. Here we review the state of river ecosystem metabolism research and synthesize the current best available estimates of river ecosystem metabolism. We quantify the organic and inorganic carbon flux from land to global rivers and show that their net ecosystem production and carbon dioxide emissions shift the organic to inorganic carbon balance en route from land to the coastal ocean. Furthermore, we discuss how global change may affect river ecosystem metabolism and related carbon fluxes and identify research directions that can help to develop better predictions of the effects of global change on riverine ecosystem processes. We argue that a global river observing system will play a key role in understanding river networks and their future evolution in the context of the global carbon budget.


Assuntos
Ciclo do Carbono , Dióxido de Carbono , Ecossistema , Rios , Dióxido de Carbono/análise , Sequestro de Carbono , Gases de Efeito Estufa/análise
2.
Proc Natl Acad Sci U S A ; 120(20): e2219816120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37159476

RESUMO

Current methods for near real-time estimation of effective reproduction numbers from surveillance data overlook mobility fluxes of infectors and susceptible individuals within a spatially connected network (the metapopulation). Exchanges of infections among different communities may thus be misrepresented unless explicitly measured and accounted for in the renewal equations. Here, we first derive the equations that include spatially explicit effective reproduction numbers, ℛk(t), in an arbitrary community k. These equations embed a suitable connection matrix blending mobility among connected communities and mobility-related containment measures. Then, we propose a tool to estimate, in a Bayesian framework involving particle filtering, the values of ℛk(t) maximizing a suitable likelihood function reproducing observed patterns of infections in space and time. We validate our tools against synthetic data and apply them to real COVID-19 epidemiological records in a severely affected and carefully monitored Italian region. Differences arising between connected and disconnected reproduction numbers (the latter being calculated with existing methods, to which our formulation reduces by setting mobility to zero) suggest that current standards may be improved in their estimation of disease transmission over time.


Assuntos
COVID-19 , Humanos , Número Básico de Reprodução , Incidência , Teorema de Bayes , COVID-19/epidemiologia , Funções Verossimilhança
3.
Phys Rev Lett ; 130(17): 171801, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37172247

RESUMO

Axionlike particles are among the most studied extensions of the standard model. In this Letter we study the bounds that the ArgoNeuT experiment can put on the parameter space of two specific scenarios: leptophilic axionlike particles and Majorons. We find that such bounds are currently the most constraining ones in the (0.2-1.7) GeV mass range.

4.
PLoS Comput Biol ; 18(7): e1010237, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35802755

RESUMO

While campaigns of vaccination against SARS-CoV-2 are underway across the world, communities face the challenge of a fair and effective distribution of a limited supply of doses. Current vaccine allocation strategies are based on criteria such as age or risk. In the light of strong spatial heterogeneities in disease history and transmission, we explore spatial allocation strategies as a complement to existing approaches. Given the practical constraints and complex epidemiological dynamics, designing effective vaccination strategies at a country scale is an intricate task. We propose a novel optimal control framework to derive the best possible vaccine allocation for given disease transmission projections and constraints on vaccine supply and distribution logistics. As a proof-of-concept, we couple our framework with an existing spatially explicit compartmental COVID-19 model tailored to the Italian geographic and epidemiological context. We optimize the vaccine allocation on scenarios of unfolding disease transmission across the 107 provinces of Italy, from January to April 2021. For each scenario, the optimal solution significantly outperforms alternative strategies that prioritize provinces based on incidence, population distribution, or prevalence of susceptibles. Our results suggest that the complex interplay between the mobility network and the spatial heterogeneities implies highly non-trivial prioritization strategies for effective vaccination campaigns. Our work demonstrates the potential of optimal control for complex and heterogeneous epidemiological landscapes at country, and possibly global, scales.


Assuntos
Vacinas contra COVID-19 , COVID-19 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Programas de Imunização , SARS-CoV-2 , Vacinação/métodos
5.
Proc Natl Acad Sci U S A ; 117(19): 10484-10491, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32327608

RESUMO

The spread of coronavirus disease 2019 (COVID-19) in Italy prompted drastic measures for transmission containment. We examine the effects of these interventions, based on modeling of the unfolding epidemic. We test modeling options of the spatially explicit type, suggested by the wave of infections spreading from the initial foci to the rest of Italy. We estimate parameters of a metacommunity Susceptible-Exposed-Infected-Recovered (SEIR)-like transmission model that includes a network of 107 provinces connected by mobility at high resolution, and the critical contribution of presymptomatic and asymptomatic transmission. We estimate a generalized reproduction number ([Formula: see text] = 3.60 [3.49 to 3.84]), the spectral radius of a suitable next-generation matrix that measures the potential spread in the absence of containment interventions. The model includes the implementation of progressive restrictions after the first case confirmed in Italy (February 21, 2020) and runs until March 25, 2020. We account for uncertainty in epidemiological reporting, and time dependence of human mobility matrices and awareness-dependent exposure probabilities. We draw scenarios of different containment measures and their impact. Results suggest that the sequence of restrictions posed to mobility and human-to-human interactions have reduced transmission by 45% (42 to 49%). Averted hospitalizations are measured by running scenarios obtained by selectively relaxing the imposed restrictions and total about 200,000 individuals (as of March 25, 2020). Although a number of assumptions need to be reexamined, like age structure in social mixing patterns and in the distribution of mobility, hospitalization, and fatality, we conclude that verifiable evidence exists to support the planning of emergency measures.


Assuntos
Controle de Doenças Transmissíveis/métodos , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Número Básico de Reprodução , Betacoronavirus , COVID-19 , Infecções por Coronavirus/transmissão , Hospitalização/estatística & dados numéricos , Humanos , Itália/epidemiologia , Modelos Teóricos , Pneumonia Viral/transmissão , SARS-CoV-2
6.
PLoS Comput Biol ; 17(1): e1008545, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33503024

RESUMO

We investigate the source detection problem in epidemiology, which is one of the most important issues for control of epidemics. Mathematically, we reformulate the problem as one of identifying the relevant component in a multivariate Gaussian mixture model. Focusing on the study of cholera and diseases with similar modes of transmission, we calibrate the parameters of our mixture model using human mobility networks within a stochastic, spatially explicit epidemiological model for waterborne disease. Furthermore, we adopt a Bayesian perspective, so that prior information on source location can be incorporated (e.g., reflecting the impact of local conditions). Posterior-based inference is performed, which permits estimates in the form of either individual locations or regions. Importantly, our estimator only requires first-arrival times of the epidemic by putative observers, typically located only at a small proportion of nodes. The proposed method is demonstrated within the context of the 2000-2002 cholera outbreak in the KwaZulu-Natal province of South Africa.


Assuntos
Transmissão de Doença Infecciosa , Epidemias , Modelos Estatísticos , Vigilância em Saúde Pública/métodos , Teorema de Bayes , Cólera/epidemiologia , Cólera/prevenção & controle , Cólera/transmissão , Biologia Computacional , Busca de Comunicante , Surtos de Doenças/prevenção & controle , Surtos de Doenças/estatística & dados numéricos , Transmissão de Doença Infecciosa/prevenção & controle , Transmissão de Doença Infecciosa/estatística & dados numéricos , Epidemias/prevenção & controle , Epidemias/estatística & dados numéricos , Humanos , Dinâmica Populacional , África do Sul , Viagem
7.
Biochem Biophys Res Commun ; 538: 253-258, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33342517

RESUMO

To monitor local and global COVID-19 outbreaks, and to plan containment measures, accessible and comprehensible decision-making tools need to be based on the growth rates of new confirmed infections, hospitalization or case fatality rates. Growth rates of new cases form the empirical basis for estimates of a variety of reproduction numbers, dimensionless numbers whose value, when larger than unity, describes surging infections and generally worsening epidemiological conditions. Typically, these determinations rely on noisy or incomplete data gained over limited periods of time, and on many parameters to estimate. This paper examines how estimates from data and models of time-evolving reproduction numbers of national COVID-19 infection spread change by using different techniques and assumptions. Given the importance acquired by reproduction numbers as diagnostic tools, assessing their range of possible variations obtainable from the same epidemiological data is relevant. We compute control reproduction numbers from Swiss and Italian COVID-19 time series adopting both data convolution (renewal equation) and a SEIR-type model. Within these two paradigms we run a comparative analysis of the possible inferences obtained through approximations of the distributions typically used to describe serial intervals, generation, latency and incubation times, and the delays between onset of symptoms and notification. Our results suggest that estimates of reproduction numbers under these different assumptions may show significant temporal differences, while the actual variability range of computed values is rather small.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Número Básico de Reprodução , Humanos , Modelos Estatísticos , Processos Estocásticos
8.
Proc Natl Acad Sci U S A ; 115(46): 11724-11729, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30373831

RESUMO

All organisms leave traces of DNA in their environment. This environmental DNA (eDNA) is often used to track occurrence patterns of target species. Applications are especially promising in rivers, where eDNA can integrate information about populations upstream. The dispersion of eDNA in rivers is modulated by complex processes of transport and decay through the dendritic river network, and we currently lack a method to extract quantitative information about the location and density of populations contributing to the eDNA signal. Here, we present a general framework to reconstruct the upstream distribution and abundance of a target species across a river network, based on observed eDNA concentrations and hydro-geomorphological features of the network. The model captures well the catchment-wide spatial biomass distribution of two target species: a sessile invertebrate (the bryozoan Fredericella sultana) and its parasite (the myxozoan Tetracapsuloides bryosalmonae). Our method is designed to easily integrate general biological and hydrological data and to enable spatially explicit estimates of the distribution of sessile and mobile species in fluvial ecosystems based on eDNA sampling.


Assuntos
DNA/análise , Biomarcadores Ambientais/genética , Hidrologia/métodos , Distribuição Animal/classificação , Animais , Biodiversidade , Biomassa , Simulação por Computador , Ecossistema , Modelos Teóricos , Rios , Manejo de Espécimes/métodos
9.
Proc Natl Acad Sci U S A ; 115(26): 6548-6553, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29891709

RESUMO

We study tree structures termed optimal channel networks (OCNs) that minimize the total gravitational energy loss in the system, an exact property of steady-state landscape configurations that prove dynamically accessible and strikingly similar to natural forms. Here, we show that every OCN is a so-called natural river tree, in the sense that there exists a height function such that the flow directions are always directed along steepest descent. We also study the natural river trees in an arbitrary graph in terms of forbidden substructures, which we call k-path obstacles, and OCNs on a d-dimensional lattice, improving earlier results by determining the minimum energy up to a constant factor for every [Formula: see text] Results extend our capabilities in environmental statistical mechanics.

10.
Proc Natl Acad Sci U S A ; 114(45): 11992-11997, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078391

RESUMO

Proliferative kidney disease (PKD) is a major threat to wild and farmed salmonid populations because of its lethal effect at high water temperatures. Its causative agent, the myxozoan Tetracapsuloides bryosalmonae, has a complex lifecycle exploiting freshwater bryozoans as primary hosts and salmonids as secondary hosts. We carried out an integrated study of PKD in a prealpine Swiss river (the Wigger). During a 3-year period, data on fish abundance, disease prevalence, concentration of primary hosts' DNA in environmental samples [environmental DNA (eDNA)], hydrological variables, and water temperatures gathered at various locations within the catchment were integrated into a newly developed metacommunity model, which includes ecological and epidemiological dynamics of fish and bryozoans, connectivity effects, and hydrothermal drivers. Infection dynamics were captured well by the epidemiological model, especially with regard to the spatial prevalence patterns. PKD prevalence in the sampled sites for both young-of-the-year (YOY) and adult brown trout attained 100% at the end of summer, while seasonal population decay was higher in YOY than in adults. We introduce a method based on decay distance of eDNA signal predicting local species' density, accounting for variation in environmental drivers (such as morphology and geology). The model provides a whole-network overview of the disease prevalence. In this study, we show how spatial and environmental characteristics of river networks can be used to study epidemiology and disease dynamics of waterborne diseases.


Assuntos
Briozoários/parasitologia , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/parasitologia , Nefropatias/veterinária , Myxozoa/patogenicidade , Truta/parasitologia , Animais , Ecossistema , Água Doce/parasitologia , Interações Hospedeiro-Parasita , Nefropatias/parasitologia , Myxozoa/metabolismo , Myxozoa/fisiologia
11.
J Theor Biol ; 462: 418-424, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30496747

RESUMO

Biodiversity patterns are governed by landscape structure and dispersal strategies of residing organisms. Landscape, however, changes, and dispersal strategies evolve with it. It is unclear how these biological and geomorphological changes interplay to affect biodiversity patterns. Here we develop metacommunity models that allow for dispersal evolution and implement them in river networks with different structures, mimicking the geomorphological dynamics of fluvial landscape. For a given dispersal kernel, a more compact network structure, where local communities are closer to one another, results in biodiversity patterns characteristic of a more well-mixed environment. When dispersal evolution is present, however, organisms adopt more local dispersal strategies in a more compact network, counteracting the effects of the more well-mixed environment. The combined effects lead to biodiversity patterns different from when dispersal evolution is absent. These findings underscore the importance of taking the interplay between the evolution of dispersal, landscape, and biodiversity patterns into account when studying and managing biodiversity in changing landscape.


Assuntos
Biodiversidade , Modelos Biológicos , Rios , Animais , Ecossistema , Dinâmica Populacional
12.
PLoS Comput Biol ; 14(5): e1006127, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29768401

RESUMO

Computational models of cholera transmission can provide objective insights into the course of an ongoing epidemic and aid decision making on allocation of health care resources. However, models are typically designed, calibrated and interpreted post-hoc. Here, we report the efforts of a team from academia, field research and humanitarian organizations to model in near real-time the Haitian cholera outbreak after Hurricane Matthew in October 2016, to assess risk and to quantitatively estimate the efficacy of a then ongoing vaccination campaign. A rainfall-driven, spatially-explicit meta-community model of cholera transmission was coupled to a data assimilation scheme for computing short-term projections of the epidemic in near real-time. The model was used to forecast cholera incidence for the months after the passage of the hurricane (October-December 2016) and to predict the impact of a planned oral cholera vaccination campaign. Our first projection, from October 29 to December 31, predicted the highest incidence in the departments of Grande Anse and Sud, accounting for about 45% of the total cases in Haiti. The projection included a second peak in cholera incidence in early December largely driven by heavy rainfall forecasts, confirming the urgency for rapid intervention. A second projection (from November 12 to December 31) used updated rainfall forecasts to estimate that 835 cases would be averted by vaccinations in Grande Anse (90% Prediction Interval [PI] 476-1284) and 995 in Sud (90% PI 508-2043). The experience gained by this modeling effort shows that state-of-the-art computational modeling and data-assimilation methods can produce informative near real-time projections of cholera incidence. Collaboration among modelers and field epidemiologists is indispensable to gain fast access to field data and to translate model results into operational recommendations for emergency management during an outbreak. Future efforts should thus draw together multi-disciplinary teams to ensure model outputs are appropriately based, interpreted and communicated.


Assuntos
Cólera , Simulação por Computador , Tempestades Ciclônicas , Surtos de Doenças , Cólera/prevenção & controle , Cólera/transmissão , Tomada de Decisões , Surtos de Doenças/prevenção & controle , Surtos de Doenças/estatística & dados numéricos , Previsões , Haiti , Humanos , Incidência
13.
Proc Natl Acad Sci U S A ; 113(7): 1737-42, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26831107

RESUMO

Elevational gradients of biodiversity have been widely investigated, and yet a clear interpretation of the biotic and abiotic factors that determine how species richness varies with elevation is still elusive. In mountainous landscapes, habitats at different elevations are characterized by different areal extent and connectivity properties, key drivers of biodiversity, as predicted by metacommunity theory. However, most previous studies directly correlated species richness to elevational gradients of potential drivers, thus neglecting the interplay between such gradients and the environmental matrix. Here, we investigate the role of geomorphology in shaping patterns of species richness. We develop a spatially explicit zero-sum metacommunity model where species have an elevation-dependent fitness and otherwise neutral traits. Results show that ecological dynamics over complex terrains lead to the null expectation of a hump-shaped elevational gradient of species richness, a pattern widely observed empirically. Local species richness is found to be related to the landscape elevational connectivity, as quantified by a newly proposed metric that applies tools of complex network theory to measure the closeness of a site to others with similar habitat. Our theoretical results suggest clear geomorphic controls on elevational gradients of species richness and support the use of the landscape elevational connectivity as a null model for the analysis of the distribution of biodiversity.


Assuntos
Altitude , Biodiversidade , Geografia , Ecossistema
14.
Proc Natl Acad Sci U S A ; 113(23): 6427-32, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27162339

RESUMO

We report about field and theoretical studies on the ecology of the aquatic snails (Bulinus spp. and Biomphalaria pfeifferi) that serve as obligate intermediate hosts in the complex life cycle of the parasites causing human schistosomiasis. Snail abundance fosters disease transmission, and thus the dynamics of snail populations are critically important for schistosomiasis modeling and control. Here, we single out hydrological drivers and density dependence (or lack of it) of ecological growth rates of local snail populations by contrasting novel ecological and environmental data with various models of host demography. Specifically, we study various natural and man-made habitats across Burkina Faso's highly seasonal climatic zones. Demographic models are ranked through formal model comparison and structural risk minimization. The latter allows us to evaluate the suitability of population models while clarifying the relevant covariates that explain empirical observations of snail abundance under the actual climatic forcings experienced by the various field sites. Our results link quantitatively hydrological drivers to distinct population dynamics through specific density feedbacks, and show that statistical methods based on model averaging provide reliable snail abundance projections. The consistency of our ranking results suggests the use of ad hoc models of snail demography depending on habitat type (e.g., natural vs. man-made) and hydrological characteristics (e.g., ephemeral vs. permanent). Implications for risk mapping and space-time allocation of control measures in schistosomiasis-endemic contexts are discussed.


Assuntos
Biomphalaria/parasitologia , Bulinus/parasitologia , Modelos Teóricos , Schistosoma mansoni , Esquistossomose/transmissão , Animais , Burkina Faso , Clima , Ecossistema , Hidrologia , Densidade Demográfica , Estações do Ano
15.
Proc Natl Acad Sci U S A ; 113(23): 6421-6, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27217564

RESUMO

The spatiotemporal evolution of human mobility and the related fluctuations of population density are known to be key drivers of the dynamics of infectious disease outbreaks. These factors are particularly relevant in the case of mass gatherings, which may act as hotspots of disease transmission and spread. Understanding these dynamics, however, is usually limited by the lack of accurate data, especially in developing countries. Mobile phone call data provide a new, first-order source of information that allows the tracking of the evolution of mobility fluxes with high resolution in space and time. Here, we analyze a dataset of mobile phone records of ∼150,000 users in Senegal to extract human mobility fluxes and directly incorporate them into a spatially explicit, dynamic epidemiological framework. Our model, which also takes into account other drivers of disease transmission such as rainfall, is applied to the 2005 cholera outbreak in Senegal, which totaled more than 30,000 reported cases. Our findings highlight the major influence that a mass gathering, which took place during the initial phase of the outbreak, had on the course of the epidemic. Such an effect could not be explained by classic, static approaches describing human mobility. Model results also show how concentrated efforts toward disease control in a transmission hotspot could have an important effect on the large-scale progression of an outbreak.


Assuntos
Telefone Celular , Cólera/epidemiologia , Surtos de Doenças , Modelos Teóricos , Densidade Demográfica , Cólera/transmissão , Humanos , Chuva , Senegal/epidemiologia
16.
J Infect Dis ; 218(7): 1164-1168, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-29757428

RESUMO

Targeted interventions have been delivered to neighbors of cholera cases in major epidemic responses globally despite limited evidence for the impact of such targeting. Using data from urban epidemics in Chad and Democratic Republic of the Congo, we estimate the extent of spatiotemporal zones of increased cholera risk around cases. In both cities, we found zones of increased risk of at least 200 meters during the 5 days immediately after case presentation to a clinic. Risk was highest for those living closest to cases and diminished in time and space similarly across settings. These results provide a rational basis for rapidly delivering targeting interventions.


Assuntos
Cólera/epidemiologia , Surtos de Doenças , Epidemias , Vibrio cholerae/isolamento & purificação , Chade/epidemiologia , Cólera/microbiologia , República Democrática do Congo/epidemiologia , Humanos , Modelos Estatísticos , Risco , População Urbana
17.
PLoS Med ; 15(2): e1002509, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29485987

RESUMO

BACKGROUND: Cholera prevention and control interventions targeted to neighbors of cholera cases (case-area targeted interventions [CATIs]), including improved water, sanitation, and hygiene, oral cholera vaccine (OCV), and prophylactic antibiotics, may be able to efficiently avert cholera cases and deaths while saving scarce resources during epidemics. Efforts to quickly target interventions to neighbors of cases have been made in recent outbreaks, but little empirical evidence related to the effectiveness, efficiency, or ideal design of this approach exists. Here, we aim to provide practical guidance on how CATIs might be used by exploring key determinants of intervention impact, including the mix of interventions, "ring" size, and timing, in simulated cholera epidemics fit to data from an urban cholera epidemic in Africa. METHODS AND FINDINGS: We developed a micro-simulation model and calibrated it to both the epidemic curve and the small-scale spatiotemporal clustering pattern of case households from a large 2011 cholera outbreak in N'Djamena, Chad (4,352 reported cases over 232 days), and explored the potential impact of CATIs in simulated epidemics. CATIs were implemented with realistic logistical delays after cases presented for care using different combinations of prophylactic antibiotics, OCV, and/or point-of-use water treatment (POUWT) starting at different points during the epidemics and targeting rings of various radii around incident case households. Our findings suggest that CATIs shorten the duration of epidemics and are more resource-efficient than mass campaigns. OCV was predicted to be the most effective single intervention, followed by POUWT and antibiotics. CATIs with OCV started early in an epidemic focusing on a 100-m radius around case households were estimated to shorten epidemics by 68% (IQR 62% to 72%), with an 81% (IQR 69% to 87%) reduction in cases compared to uncontrolled epidemics. These same targeted interventions with OCV led to a 44-fold (IQR 27 to 78) reduction in the number of people needed to target to avert a single case of cholera, compared to mass campaigns in high-cholera-risk neighborhoods. The optimal radius to target around incident case households differed by intervention type, with antibiotics having an optimal radius of 30 m to 45 m compared to 70 m to 100 m for OCV and POUWT. Adding POUWT or antibiotics to OCV provided only marginal impact and efficiency improvements. Starting CATIs early in an epidemic with OCV and POUWT targeting those within 100 m of an incident case household reduced epidemic durations by 70% (IQR 65% to 75%) and the number of cases by 82% (IQR 71% to 88%) compared to uncontrolled epidemics. CATIs used late in epidemics, even after the peak, were estimated to avert relatively few cases but substantially reduced the number of epidemic days (e.g., by 28% [IQR 15% to 45%] for OCV in a 100-m radius). While this study is based on a rigorous, data-driven approach, the relatively high uncertainty about the ways in which POUWT and antibiotic interventions reduce cholera risk, as well as the heterogeneity in outbreak dynamics from place to place, limits the precision and generalizability of our quantitative estimates. CONCLUSIONS: In this study, we found that CATIs using OCV, antibiotics, and water treatment interventions at an appropriate radius around cases could be an effective and efficient way to fight cholera epidemics. They can provide a complementary and efficient approach to mass intervention campaigns and may prove particularly useful during the initial phase of an outbreak, when there are few cases and few available resources, or in order to shorten the often protracted tails of cholera epidemics.


Assuntos
Vacinas contra Cólera/uso terapêutico , Cólera/epidemiologia , Cólera/terapia , Surtos de Doenças , Necessidades e Demandas de Serviços de Saúde , Modelos Teóricos , Administração de Caso/normas , Administração de Caso/estatística & dados numéricos , Cólera/prevenção & controle , Simulação por Computador , Geografia , Implementação de Plano de Saúde/normas , Necessidades e Demandas de Serviços de Saúde/normas , Necessidades e Demandas de Serviços de Saúde/estatística & dados numéricos , Humanos , Purificação da Água/normas
18.
Phys Rev Lett ; 121(24): 241801, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30608753

RESUMO

We present a novel framework that provides an explanation to the long-standing excess of electronlike events in the MiniBooNE experiment at Fermilab. We suggest a new dark sector containing a dark neutrino and a dark gauge boson, both with masses between a few tens and a few hundreds of MeV. Dark neutrinos are produced via neutrino-nucleus scattering, followed by their decay to the dark gauge boson, which in turn gives rise to electronlike events. This mechanism provides an excellent fit to MiniBooNE energy spectra and angular distributions.

19.
Biol Lett ; 14(10)2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305460

RESUMO

The loss of environmental heterogeneity threatens biodiversity and ecosystem functioning. It is therefore important to understand the relationship between environmental heterogeneity and spatial resilience as the capacity of ecological communities embedded in a landscape matrix to reorganize following disturbance. We experimented with phototrophic biofilms colonizing streambed landscapes differing in spatial heterogeneity and exposed to flow-induced disturbance. We show how streambed roughness and related features promote growth-related trait diversity and the recovery of biofilms towards carrying capacity (CC) and spatial resilience. At the scale of streambed landscapes, roughness and exposure to water flow promoted biofilm CC and growth trait diversity. Structural equation modelling identified roughness, post-disturbance biomass and a 'neighbourhood effect' to drive biofilm CC. Our findings suggest that the environment selecting for adaptive capacities prior to disturbance (that is, memory effects) and biofilm connectivity into spatial networks (that is, mobile links) contribute to the spatial resilience of biofilms in streambed landscapes. These findings are critical given the key functions biofilms fulfil in streams, now increasingly experiencing shifts in sedimentary and hydrological regimes.


Assuntos
Biofilmes , Ecossistema , Perifíton/fisiologia , Rios , Biodiversidade , Conservação dos Recursos Naturais , Movimentos da Água
20.
J Theor Biol ; 432: 87-99, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-28823529

RESUMO

Simple models of disease propagation often disregard the effects of transmission heterogeneity on the ecological and epidemiological dynamics associated with host-parasite interactions. However, for some diseases like schistosomiasis, a widespread parasitic infection caused by Schistosoma worms, accounting for heterogeneity is crucial to both characterize long-term dynamics and evaluate opportunities for disease control. Elaborating on the classic Macdonald model for macroparasite transmission, we analyze families of models including explicit descriptions of heterogeneity related to differential transmission risk within a community, water contact patterns, the distribution of the snail host population, human mobility, and the seasonal fluctuations of the environment. Through simple numerical examples, we show that heterogeneous multigroup communities may be more prone to schistosomiasis than homogeneous ones, that the availability of multiple water sources can hinder parasite transmission, and that both spatial and temporal heterogeneities may have nontrivial implications for disease endemicity. Finally, we discuss the implications of heterogeneity for disease control. Although focused on schistosomiasis, results from this study may apply as well to other parasitic infections with complex transmission cycles, such as cysticercosis, dracunculiasis and fasciolosis.


Assuntos
Esquistossomose/transmissão , Animais , Doenças Endêmicas , Humanos , Modelos Biológicos , Schistosoma/fisiologia , Esquistossomose/epidemiologia , Esquistossomose/parasitologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA