Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Radiology ; 310(2): e232365, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38349244

RESUMO

Background Image-guided tumor ablation is the first-line therapy for early-stage hepatocellular carcinoma (HCC), with ongoing investigations into its combination with immunotherapies. Matrix metalloproteinase (MMP) inhibition demonstrates immunomodulatory potential and reduces HCC tumor growth when combined with ablative treatment. Purpose To evaluate the effect of incomplete cryoablation with or without MMP inhibition on the local immune response in residual tumors in a murine HCC model. Materials and Methods Sixty 8- to 10-week-old female BALB/c mice underwent HCC induction with use of orthotopic implantation of syngeneic Tib-75 cells. After 7 days, mice with a single lesion were randomized into treatment groups: (a) no treatment, (b) MMP inhibitor, (c) incomplete cryoablation, and (d) incomplete cryoablation and MMP inhibitor. Macrophage and T-cell subsets were assessed in tissue samples with use of immunohistochemistry and immunofluorescence (cell averages calculated using five 1-µm2 fields of view [FOVs]). C-X-C motif chemokine receptor type 3 (CXCR3)- and interferon γ (IFNγ)-positive T cells were assessed using flow cytometry. Groups were compared using unpaired Student t tests, one-way analysis of variance with Tukey correction, and the Kruskal-Wallis test with Dunn correction. Results Mice treated with incomplete cryoablation (n = 6) showed greater infiltration of CD206+ tumor-associated macrophages (mean, 1.52 cells per FOV vs 0.64 cells per FOV; P = .03) and MMP9-expressing cells (mean, 0.89 cells per FOV vs 0.11 cells per FOV; P = .03) compared with untreated controls (n = 6). Incomplete cryoablation with MMP inhibition (n = 6) versus without (n = 6) led to greater CD8+ T-cell (mean, 15.8% vs 8.29%; P = .04), CXCR3+CD8+ T-cell (mean, 11.64% vs 8.47%; P = .004), and IFNγ+CD8+ T-cell infiltration (mean, 11.58% vs 5.18%; P = .02). Conclusion In a mouse model of HCC, incomplete cryoablation and systemic MMP inhibition showed increased cytotoxic CD8+ T-cell infiltration into the residual tumor compared with either treatment alone. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Gemmete in this issue.


Assuntos
Carcinoma Hepatocelular , Criocirurgia , Neoplasias Hepáticas , Feminino , Animais , Camundongos , Carcinoma Hepatocelular/cirurgia , Inibidores de Metaloproteinases de Matriz , Neoplasias Hepáticas/cirurgia , Linfócitos T CD8-Positivos , Metaloproteinases da Matriz
2.
J Vasc Interv Radiol ; 34(12): 2162-2172.e2, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37634850

RESUMO

PURPOSE: To compare the mechanistic effects and hypertrophy outcomes using 2 different portal vein embolization (PVE) regimens in normal and cirrhotic livers in a large animal model. METHODS AND MATERIALS: The Institutional Animal Care and Use Committee approved all experiments conducted in this study. Fourteen female Yorkshire pigs were separated into a cirrhotic group (CG, n = 7) and non-cirrhotic group (NCG, n = 7) and further subgrouped into those using microspheres and coils (MC, n = 3) or n-butyl cyanoacrylate (nBCA, n = 3) and their corresponding controls (each n = 1). A 3:1 ethiodized oil and ethanol mixture was administered intra-arterially in the CG to induce cirrhosis 4 weeks before PVE. Animals underwent baseline computed tomography (CT), PVE including pre-PVE and post-PVE pressure measurements, and CT imaging at 2 and 4 weeks after PVE. Immunofluorescence stainings for CD3, CD16, Ki-67, and caspase 3 were performed to assess immune cell infiltration, hepatocyte proliferation, and apoptosis. Statistical significance was tested using the Student's t test. RESULTS: Four weeks after PVE, the percentage of future liver remnant (FLR%) increased by 18.8% (standard deviation [SD], 3.6%) vs 10.9% (SD, 0.95%; P < .01) in the NCG vs CG. The baseline percentage of standardized future liver remnant (sFLR%) for the controls were 41.6% for CG vs 43.6% for NCG. Based on the embolic agents used, the sFLR% two weeks after PVE was 58.4% (SD, 3.7%) and 52.2% (SD, 0.9%) (P < .01) for MC and 46.0% (SD, 2.2%) and 47.2% (SD, 0.4%) for nBCA in the NCG and CG, respectively. Meanwhile, the sFLR% 4 weeks after PVE was 60.5% (SD, 3.9%) and 54.9% (SD, 0.8%) (P < .01) and 60.4% (SD, 3.5%) and 54.2% (SD, 0.95%) (P < .01), respectively. Ki-67 signal intensity increased in the embolized lobe in both CG and NCG (P < .01). CONCLUSIONS: This preclinical study demonstrated that MC could be the preferred embolic of choice compared to nBCA when a substantial and rapid FLR increase is needed for resection, in both cirrhotic and non-cirrhotic livers.


Assuntos
Embolia , Embolização Terapêutica , Neoplasias Hepáticas , Animais , Feminino , Suínos , Veia Porta/diagnóstico por imagem , Veia Porta/patologia , Antígeno Ki-67 , Fígado/patologia , Hepatectomia/métodos , Embolização Terapêutica/métodos , Neoplasias Hepáticas/terapia , Hipertrofia/patologia , Hipertrofia/cirurgia , Embolia/cirurgia , Cirrose Hepática/complicações , Cirrose Hepática/diagnóstico por imagem , Modelos Animais , Resultado do Tratamento
3.
J Vasc Interv Radiol ; 33(7): 764-774.e4, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35346859

RESUMO

PURPOSE: To characterize the effects of commonly used transcatheter arterial chemoembolization (TACE) regimens on the immune response and immune checkpoint marker expression using a VX2 rabbit liver tumor model. MATERIALS AND METHODS: Twenty-four VX2 liver tumor-bearing New Zealand white rabbits were assigned to 7 groups (n = 3 per group) undergoing locoregional therapy as follows: (a) bicarbonate infusion without embolization, (b) conventional TACE (cTACE) using a water-in-oil emulsion containing doxorubicin mixed 1:2 with Lipiodol, drug-eluting embolic-TACE with either (c) idarubicin-eluting Oncozene microspheres (40 µm) or (d) doxorubicin-eluting Lumi beads (40-90 µm). For each therapy arm (b-d), a tandem set of 3 animals with additional bicarbonate infusion before TACE was added, to evaluate the effect of pH modification on the immune response. Three untreated rabbits served as controls. Tissue was harvested 24 hours after treatment, followed by digital immunohistochemistry quantification (counts/µm2 ± SEM) of tumor-infiltrating cluster of differentiation 3+ T-lymphocytes, human leukocyte antigen DR type antigen-presenting cells (APCs), cytotoxic T-lymphocyte-associated protein-4 (CTLA-4), and programmed cell death protein-1 (PD-1)/PD-1 ligand (PD-L1) pathway axis expression. RESULTS: Lumi-bead TACE induced significantly more intratumoral T-cell and APC infiltration than cTACE and Oncozene-microsphere TACE. Additionally, tumors treated with Lumi-bead TACE expressed significantly higher intratumoral immune checkpoint markers compared with cTACE and Oncozene-microsphere TACE. Neoadjuvant bicarbonate demonstrated the most pronounced effect on cTACE and resulted in a significant increase in intratumoral cluster of differentiation 3+ T-cell infiltration compared with cTACE alone. CONCLUSIONS: This preclinical study revealed significant differences in evoked tumor immunogenicity depending on the choice of chemoembolic regimen for TACE.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Animais , Antibióticos Antineoplásicos , Bicarbonatos/uso terapêutico , Carcinoma Hepatocelular/terapia , Quimioembolização Terapêutica/métodos , Doxorrubicina , Neoplasias Hepáticas/terapia , Receptor de Morte Celular Programada 1 , Coelhos
4.
Front Immunol ; 14: 1133207, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911692

RESUMO

In recent years, a wide range of cancer immunotherapies have been developed and have become increasingly important in cancer treatment across multiple oncologic diseases. In particular, immune checkpoint inhibitors (ICIs) offer promising options to improve patient outcomes. However, a major limitation of these treatments consists in the development of immune-related adverse events (irAEs) occurring in potentially any organ system and affecting up to 76% of the patients. The most frequent toxicities involve the skin, gastrointestinal tract, and endocrine system. Although mostly manageable, potentially life-threatening events, particularly due to neuro-, cardiac, and pulmonary toxicity, occur in up to 30% and 55% of the patients treated with ICI-monotherapy or -combination therapy, respectively. Imaging, in particular computed tomography (CT), magnetic resonance imaging (MRI), and 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography (18F-FDG-PET/CT), plays an important role in the detection and characterization of these irAEs. In some patients, irAEs can even be detected on imaging before the onset of clinical symptoms. In this context, it is particularly important to distinguish irAEs from true disease progression and specific immunotherapy related response patterns, such as pseudoprogression. In addition, there are irAEs which might be easily confused with other pathologies such as infection or metastasis. However, many imaging findings, such as in immune-related pneumonitis, are nonspecific. Thus, accurate diagnosis may be delayed underling the importance for adequate imaging features characterization in the appropriate clinical setting in order to provide timely and efficient patient management. 18F-FDG-PET/CT and radiomics have demonstrated to reliably detect these toxicities and potentially have predictive value for identifying patients at risk of developing irAEs. The purpose of this article is to provide a review of the main immunotherapy-related toxicities and discuss their characteristics on imaging.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Inibidores de Checkpoint Imunológico , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Fluordesoxiglucose F18 , Tomografia Computadorizada por Raios X
5.
Front Oncol ; 12: 982983, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387133

RESUMO

In recent years, various systemic immunotherapies have been developed for cancer treatment, such as monoclonal antibodies (mABs) directed against immune checkpoints (immune checkpoint inhibitors, ICIs), oncolytic viruses, cytokines, cancer vaccines, and adoptive cell transfer. While being estimated to be eligible in 38.5% of patients with metastatic solid or hematological tumors, ICIs, in particular, demonstrate durable disease control across many oncologic diseases (e.g., in melanoma, lung, bladder, renal, head, and neck cancers) and overall survival benefits. Due to their unique mechanisms of action based on T-cell activation, response to immunotherapies is characterized by different patterns, such as progression prior to treatment response (pseudoprogression), hyperprogression, and dissociated responses following treatment. Because these features are not encountered in the Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST 1.1), which is the standard for response assessment in oncology, new criteria were defined for immunotherapies. The most important changes in these new morphologic criteria are, firstly, the requirement for confirmatory imaging examinations in case of progression, and secondly, the appearance of new lesions is not necessarily considered a progressive disease. Until today, five morphologic (immune-related response criteria (irRC), immune-related RECIST (irRECIST), immune RECIST (iRECIST), immune-modified RECIST (imRECIST), and intra-tumoral RECIST (itRECIST)) criteria have been developed to accurately assess changes in target lesion sizes, taking into account the specific response patterns after immunotherapy. In addition to morphologic response criteria, 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography (18F-FDG-PET/CT) is a promising option for metabolic response assessment and four metabolic criteria are used (PET/CT Criteria for Early Prediction of Response to Immune Checkpoint Inhibitor Therapy (PECRIT), PET Response Evaluation Criteria for Immunotherapy (PERCIMT), immunotherapy-modified PET Response Criteria in Solid Tumors (imPERCIST5), and immune PERCIST (iPERCIST)). Besides, there is evidence that parameters on 18F-FDG-PET/CT, such as the standardized uptake value (SUV)max and several radiotracers, e.g., directed against PD-L1, may be potential imaging biomarkers of response. Moreover, the emerge of human intratumoral immunotherapy (HIT-IT), characterized by the direct injection of immunostimulatory agents into a tumor lesion, has given new importance to imaging assessment. This article reviews the specific imaging patterns of tumor response and progression and available imaging response criteria following immunotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA