Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Anim Ecol ; 92(2): 430-441, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36494717

RESUMO

Temperature is a fundamental driver of species' vital rates and thus coexistence, extinctions and community composition. While temperature is neither static in space nor in time, little work has incorporated spatiotemporal dynamics into community-level investigations of thermal variation. We conducted a microcosm experiment using ciliate protozoa to test the effects of temperatures fluctuating synchronously or asynchronously on communities in two-patch landscapes connected by short or long corridors. We monitored the abundance of each species for 4 weeks-equivalent to ~28 generations-measuring the effects of four temperature regimes and two corridor lengths on community diversity and composition. While corridor length significantly altered the trajectory of diversity change in the communities, this did not result in different community structures at the end of the experiment. The type of thermal variation significantly affected both the temporal dynamics of diversity change and final community composition, with synchronous fluctuation causing deterministic extinctions that were consistent across replicates and spatial variation causing the greatest diversity declines. Our results suggest that the presence and type of thermal variation can play an important role in structuring ecological communities, especially when it interacts with dispersal between habitat patches.


Assuntos
Biota , Ecossistema , Animais , Temperatura
2.
Ecol Lett ; 25(12): 2753-2775, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36264848

RESUMO

High-resolution monitoring is fundamental to understand ecosystems dynamics in an era of global change and biodiversity declines. While real-time and automated monitoring of abiotic components has been possible for some time, monitoring biotic components-for example, individual behaviours and traits, and species abundance and distribution-is far more challenging. Recent technological advancements offer potential solutions to achieve this through: (i) increasingly affordable high-throughput recording hardware, which can collect rich multidimensional data, and (ii) increasingly accessible artificial intelligence approaches, which can extract ecological knowledge from large datasets. However, automating the monitoring of facets of ecological communities via such technologies has primarily been achieved at low spatiotemporal resolutions within limited steps of the monitoring workflow. Here, we review existing technologies for data recording and processing that enable automated monitoring of ecological communities. We then present novel frameworks that combine such technologies, forming fully automated pipelines to detect, track, classify and count multiple species, and record behavioural and morphological traits, at resolutions which have previously been impossible to achieve. Based on these rapidly developing technologies, we illustrate a solution to one of the greatest challenges in ecology: the ability to rapidly generate high-resolution, multidimensional and standardised data across complex ecologies.


Assuntos
Inteligência Artificial , Ecossistema , Biodiversidade , Biota
3.
Environ Sci Technol ; 54(8): 4733-4745, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32202766

RESUMO

Environmental plastic pollution is a major ecological and societal concern today. Over the past decade, a broad range of laboratory and experimental studies have complemented field observations in the hope of achieving a better understanding of the fate and impact of micro- and/or nanoplastics (MP/NP) on diverse organisms (e.g., birds, fish, and mammals). However, plastic pollution remains challenging to monitor in the environment and to control under laboratory conditions, and plastic particles are often naturally or experimentally co-contaminated with diverse chemical pollutants. Therefore, our understanding of the effects of virgin MP/NP in freshwater and marine fish is still limited. Here, we performed a systematic review of the most up-to-date literature on the effects of virgin MP/NP on fish under laboratory conditions. A total of 782 biological endpoints investigated in 46 studies were extracted. Among these endpoints, 32% were significantly affected by exposure to virgin MP/NP. More effects were observed for smaller plastic particles (i.e., size ≤20 µm), affecting fish behavioral and neurological functions, intestinal permeability, metabolism, and intestinal microbiome diversity. In addition, we propose suggestions for new research directions to lead toward innovative, robust, and scientifically sound experiments in this field. This review of experimental studies reveals that the toxicity of virgin MP/NP on fish should be more systematically evaluated using rigorous laboratory-based methods and aims toward a better understanding of the underlying mechanisms of this toxicity to fish.


Assuntos
Poluentes Químicos da Água/análise , Animais , Peixes , Água Doce , Plásticos
4.
Oecologia ; 193(1): 125-134, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32285197

RESUMO

How vocal organisms share acoustic space has primarily received attention in terrestrial environments. Comparable studies in marine environments, however, remain rare. By recording sounds on a coral reef in French Polynesia for 48 h and 24 h, this study provides first insights on how different sound types are distributed within the acoustic space and may create acoustic niches optimizing acoustic communication within a highly diverse community containing numerous soniferous fish species. Day-time was dominated by two to six sound types, while recordings performed at night revealed a more diverse vocal community made of up to nineteen sound types. Calling activity was distributed over time allowing each sound type to dominate the soundscape sequentially. Additionally, differences in the acoustic features of sounds occurring during the same period were observed. Such partitioning in time and acoustic spaces would reduce potential overlaps of sounds produced by vocal species living in sympatry in coral reefs.


Assuntos
Recifes de Corais , Peixes , Acústica , Animais , Polinésia , Som
5.
Ecol Lett ; 22(2): 256-264, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30481409

RESUMO

Mutualisms are important ecological interactions that underpin much of the world's biodiversity. Predation risk has been shown to regulate mutualism dynamics in species-specific case studies; however, we lack studies which investigate whether predation can also explain broader patterns of mutualism evolution. We report that fish-anemone mutualisms have evolved on at least 55 occasions across 16 fish families over the past 60 million years and that adult body size is associated with the ontogenetic stage of anemone mutualisms: larger-bodied species partner with anemones as juveniles, while smaller-bodied species partner with anemones throughout their lives. Field and laboratory studies show that predators target smaller prey, that smaller fishes associate more with anemones, and that these relationships confer protection to small fishes. Our results indicate that predation is likely driving the recurrent convergent evolution of fish-anemone mutualisms and suggest that similar ecological processes may have selected convergence in interspecies interactions in other animal clades.


Assuntos
Recifes de Corais , Comportamento Predatório , Simbiose , Animais , Biodiversidade , Peixes
6.
Bull Environ Contam Toxicol ; 102(4): 457-461, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30863970

RESUMO

Microplastics (MP) are ubiquitous in the marine environment and have been shown to alter the behaviour of some species due to potential neurotoxic effect. However, very little is known on the effect of this stressor on behavioural responses of early and more vulnerable life stages. This study explores the effects of polystyrene MP (90 µm diameter) on the foraging activity of newly settled surgeonfish Acanthurus triostegus and on their survival facing predators. Exposure to a high concentration of 5 MP particles per mL (5 MP mL-1) for 3, 5 and 8 days did not alter their foraging activity nor their susceptibility to predation. This suggests that short-term exposures to reportedly high MP concentrations have negligible effects on the behaviour of newly settled A. triostegus. Nevertheless, responses to MP can be highly variable, and further research is needed to determine potential ecological effects of MP on reef fish populations during early-life stages.


Assuntos
Recifes de Corais , Comportamento Alimentar/efeitos dos fármacos , Perciformes/fisiologia , Plásticos/toxicidade , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Relação Dose-Resposta a Droga , Larva/efeitos dos fármacos , Polinésia , Comportamento Predatório/efeitos dos fármacos , Análise de Sobrevida
7.
Appl Environ Microbiol ; 84(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29453266

RESUMO

Teleost fish represent the most diverse of the vertebrate groups and play important roles in food webs, as ecosystem engineers, and as vectors for microorganisms. However, the microbial ecology of fishes remains underexplored for most host taxa and for certain niches on the fish body. This is particularly true for the gills, the key sites of respiration and waste exchange in fishes. Here we provide a comprehensive analysis of the gill microbiome. We focus on ecologically diverse taxa from coral reefs around Moorea, sampling the gills and intestines of adults and juveniles representing 15 families. The gill microbiome composition differed significantly from that of the gut for both adults and juveniles, with fish-associated niches having lower alpha diversity values and higher beta diversity values than those for seawater, sediment, and alga-associated microbiomes. Of ∼45,000 operational taxonomic units (OTUs) detected across all samples, 11% and 13% were detected only in the gill and the intestine, respectively. OTUs most enriched in the gill included members of the gammaproteobacterial genus Shewanella and the family Endozoicimonaceae In adult fish, both gill and intestinal microbiomes varied significantly among host species grouped by diet category. Gill and intestinal microbiomes from the same individual were more similar to one another than to gill and intestinal microbiomes from different individuals. These results demonstrate that distinct body sites are jointly influenced by host-specific organizing factors operating at the level of the host individual. The results also identify taxonomic signatures unique to the gill and the intestine, confirming fish-associated niches as distinct reservoirs of marine microbial diversity.IMPORTANCE Fish breathe and excrete waste through their gills. The gills are also potential sites of pathogen invasion and colonization by other microbes. However, we know little about the microbial communities that live on the gill and the factors shaping their diversity. Focusing on ecologically distinct types of coral reef fish, we provide a comprehensive analysis of the fish gill microbiome. By comparison to microbiomes of the gut and the surrounding environment, we identify microbes unique to the gill niche. These microbes may be targets for further studies to determine the contribution of the microbiome to waste exchange or host immunity. We also show that despite exhibiting a unique taxonomic signature, the gill microbiome is influenced by factors that also influence the gut microbiome. These factors include the specific identity of the host individual. These results suggest basic principles describing how association with fishes structures the composition of microbial communities.


Assuntos
Bactérias/isolamento & purificação , Peixes/microbiologia , Brânquias/microbiologia , Microbiota , Animais , Bactérias/classificação , Recifes de Corais , Polinésia
8.
Mar Drugs ; 16(5)2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29702602

RESUMO

Herein, we describe the isolation and spectroscopic identification of eight new tetrabrominated tyrosine alkaloids 2⁻9 from the Polynesian sponge Suberea ianthelliformis, along with known major compound psammaplysene D (1), N,N-dimethyldibromotyramine, 5-hydroxy xanthenuric acid, and xanthenuric acid. Cytotoxicity and acetylcholinesterase inhibition activities were evaluated for some of the isolated metabolites. They exhibited moderate antiproliferative activity against KB cancer cell lines, but psammaplysene D (1) displayed substantial cytotoxicity as well as acetylcholinesterase inhibition with IC50 values of 0.7 μM and 1.3 μM, respectively.


Assuntos
Alcaloides/química , Alcaloides/farmacologia , Poríferos/metabolismo , Tirosina/análogos & derivados , Animais , Estrutura Molecular , Poríferos/química , Tirosina/química
9.
Ecol Evol ; 13(9): e10474, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37664517

RESUMO

Temperature change affects biological systems in multifaceted ways, including the alteration of species interaction strengths, with implications for the stability of populations and communities. Temperature-dependent changes to antipredatory responses are an emerging mechanism of destabilization and thus there is a need to understand how prey species respond to predation pressures in the face of changing temperatures. Here, using ciliate protozoans, we assess whether temperature can alter the strength of phenotypic antipredator responses in a prey species and whether this relationship depends on the predator's hunting behavior. We exposed populations of the ciliate Paramecium caudatum to either (i) a sit-and-wait generalist predator (Homalozoon vermiculare) or (ii) a specialized active swimmer predator (Didinium nasutum) across two different temperature regimes (15 and 25°C) to quantify the temperature dependence of antipredator responses over a 24-h period. We utilized a novel high-throughput automated robotic monitoring system to track changes in the behavior (swimming speed) and morphology (cell size) of P. caudatum at frequencies and resolutions previously unachievable by manual sampling. The change in swimming speed through the 24 h differed between the two temperatures but was not altered by the presence of the predators. In contrast, P. caudatum showed a substantial temperature-dependent morphological response to the presence of D. nasutum (but not H. vermiculare), changing cell shape toward a more elongated morph at 15°C (but not at 25°C). Our findings suggest that temperature can have strong effects on prey morphological responses to predator presence, but that this response is potentially dependent on the predator's feeding strategy. This suggests that greater consideration of synergistic antipredator behavioral and physiological responses is required in species and communities subject to environmental changes.

10.
Aquat Toxicol ; 250: 106235, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35944346

RESUMO

The fate and toxicity of ingested marine microplastics (MPs) have been of major concern in aquatic ecotoxicology for the last decade. Although their ingestion by a wide range of marine organisms has been proven, the uptake of MPs within organs is not yet fully understood and relies on the ability of ingested microplastics to transfer from the gut to tissues beyond the digestive wall (i.e., translocation). The present study investigates the in vitro transfer of fluorescent high-density polyethylene particles of different sizes classes (1-5 µm; 10-29 µm; 38-45 µm) across the intestinal wall of the sea urchin Paracentrotus lividus using Ussing chambers. Small microplastics (1-5 µm) were proven to be able to cross the intestinal wall of P. lividus and reach the coelomic fluid, while larger microplastics (≥ 10 µm) were not observed to cross the intestinal wall. Results demonstrate a size-dependent passage of polyethylene microparticles across the intestinal walls of P. lividus for the first time, highlighting the suitability of Ussing chamber systems to study the transfer of MPs across the intestinal wall of animals.


Assuntos
Paracentrotus , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos , Polietileno , Poluentes Químicos da Água/toxicidade
11.
Mar Pollut Bull ; 185(Pt B): 114322, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36427378

RESUMO

The present study reports the first experimental microplastic-mediated transfer of a key PCB congener into adult specimens of the sea urchin Paracentrotus lividus. Three experiments were conducted to assess whether 14C-PCB-153 adsorbed onto negatively buoyant microplastics (MPs) (500-600 µm) is bioavailable to the sea urchin: (1) exposure to a low concentration of 14C-PCB-153 sorbed onto a high number of virgin MPs ("lowPCB highMP" experiment), (2) exposure to a high concentration of 14C-PCB-153 sorbed onto a relatively low number of virgin MPs ("highPCB lowMP" experiment), and (3) exposure to a low concentration of 14C-PCB-153 sorbed onto a relatively low number of aged MP ("lowPCB lowMP" experiment). Results showed that the transfer of 14C-PCB-153 from MPs to sea urchin tissues occurred in each of the three 15-day experiments, suggesting that MPs located on the seafloor may act as vectors of PCB-153 to sea urchins even during short-term exposure events.


Assuntos
Paracentrotus , Bifenilos Policlorados , Animais , Microplásticos , Plásticos
12.
Aquat Toxicol ; 241: 106004, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34739976

RESUMO

Plastic pollution has become a major environmental and societal concern in the last decade. From larger debris to microplastics (MP), this pollution is ubiquitous and particularly affects aquatic ecosystems. MP can be directly or inadvertently ingested by organisms, transferred along the trophic chain, and sometimes translocated into tissues. However, the impacts of such MP exposure on organisms' biological functions are yet to be fully understood. Here, we used a multi-diagnostic approach at multiple levels of biological organization (from atoms to organisms) to determine how MP affect the biology of a marine fish, the gilthead seabream, Sparus aurata. We exposed juvenile seabreams for 35 days to spherical 10-20 µm polyethylene primary MP through food (Artemia salina pre-exposed to MP) at a concentration of 5 ± 1 µg of MP per gram of fish per day. MP-exposed fish experienced higher mortality, increased abundance of several brain and liver primary metabolites, hepatic and intestinal histological defects, higher assimilation of an essential element (Zn), and lower assimilation of a non-essential element (Ag). In contrast, growth and muscle C/N isotopic profiles were similar between control and MP-exposed fish, while variable patterns were observed for the intestinal microbiome. This comprehensive analysis of biological responses to MP exposure reveals how MP ingestion can cause negligible to profound effects in a fish species and contributes towards a better understanding of the causal mechanisms of its toxicity.


Assuntos
Dourada , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Microplásticos , Plásticos/toxicidade , Polietileno/toxicidade , Poluentes Químicos da Água/toxicidade
13.
Mar Pollut Bull ; 155: 111175, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32469783

RESUMO

French Polynesia exhibits a wide diversity of islands and coral-reef habitats, from urbanized high islands to remote atolls. Here, we present a geographically extensive baseline survey that examine the concentrations of nine metals (Ag, Cd, Co, Cu, Fe, Mn, Ni, Pb and Zn) and one metalloid (As) in superficial sediments from 28 sites spread over three islands of French Polynesia. We used Principal Component Analysis, Pearson's correlation, hierarchical cluster analysis and generalized linear mixed-effect models on Pollution Load Index to investigate site contamination and metal(loid) associations. At most sites, metal(loid) concentrations were below commonly applied sediment quality guidelines. However, a few sites located near farming activities, river discharges and urbanized areas showed concentrations above these guidelines. This study provides critical baseline values for metal(loid) contaminants in this region and in coral-reef areas in general, and spur decreased discharge of metal(loid) contaminants in the anthropogenised areas of French Polynesia.


Assuntos
Metaloides/análise , Metais Pesados/análise , Poluentes Químicos da Água/análise , Recifes de Corais , Monitoramento Ambiental , Sedimentos Geológicos , Ilhas , Metais/análise , Polinésia , Rios
14.
Mar Pollut Bull ; 156: 111203, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32510362

RESUMO

Changes in seawater pH can alter the chemical speciation of waterborne chemical elements, affecting their bioavailability and, consequently, their bioaccumulation in marine organisms. Here, controlled environmental conditions and a 210Pb radiotracer were used to assess the effect of five distinct pH conditions (pHT ranging from 7.16 to 7.94) on the short-term (9 days) accumulation of Pb in the blue mussel, Mytilus edulis. After 9 days of exposure, higher levels of Pb were observed in the soft tissues of mussels maintained in the lower pH conditions, while Pb levels accumulated by mussel shells showed no difference across pH conditions. These results suggest that pH decreases such as those predicted by ocean acidification scenarios could enhance Pb contamination in marine organisms, with potential subsequent contamination and effect risks for human consumers.


Assuntos
Mytilus edulis , Mytilus , Poluentes Químicos da Água/análise , Animais , Concentração de Íons de Hidrogênio , Chumbo , Água do Mar
15.
Mar Pollut Bull ; 156: 111223, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32510371

RESUMO

Plastic pollution has become a major environmental concern worldwide, and marine ecosystems have become polluted with ubiquitous microplastic particles (MP). MP can contain chemical additives and can also scavenge pollutants from the surrounding environment, and these co-contaminants may threaten the marine biota when MP become inadvertently ingested and transferred up the food chain. However, our understanding of the sorption-desorption kinetics of chemical compounds bound to MP remains limited. Moreover, whether MP are better transport vectors of co-contaminants than other natural particles (e.g. sediment) has not received much attention. Here, we used radiotracers to examine the partition coefficients (Kd) of three trace metals (109Cd, 134Cs, and 65Zn) to virgin MP (32-75 µm polyethylene beads) and to natural sediment particles of a similar size (35-91 µm) in seawater. After 72 h, sediment particles adsorbed 2.5% of 109Cd, 68.0% of 134Cs, and 71.0% of 65Zn, while MP adsorbed <0.8% of these three elements. Results highlight that under these experimental conditions, virgin polyethylene MP may not be effective transport vectors for these trace metals. Important variations in Kd were observed between elements, inciting for further studies to decipher how chemical characteristics, MP composition, and associated-biofilms, all interact in these biokinetic processes. These results demonstrate how radiotracers can allow us to address important knowledge gaps and broaden our understanding regarding the interactions between waterborne contaminants, naturally occurring particles and marine wildlife.


Assuntos
Plásticos , Poluentes Químicos da Água/análise , Adsorção , Cádmio , Ecossistema , Microplásticos , Polietileno , Zinco
16.
Nat Commun ; 11(1): 3614, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32681015

RESUMO

Larval metamorphosis and recruitment represent critical life-history transitions for most teleost fishes. While the detrimental effects of anthropogenic stressors on the behavior and survival of recruiting fishes are well-documented, the physiological mechanisms that underpin these patterns remain unclear. Here, we use pharmacological treatments to highlight the role that thyroid hormones (TH) play in sensory development and determining anti-predator responses in metamorphosing convict surgeonfish, Acanthurus triostegus. We then show that high doses of a physical stressor (increased temperature of +3 °C) and a chemical stressor (the pesticide chlorpyrifos at 30 µg L-1) induced similar defects by decreasing fish TH levels and affecting their sensory development. Stressor-exposed fish experienced higher predation; however, their ability to avoid predation improved when they received supplemental TH. Our results highlight that two different anthropogenic stressors can affect critical developmental and ecological transitions via the same physiological pathway. This finding provides a unifying mechanism to explain past results and underlines the profound threat anthropogenic stressors pose to fish communities.


Assuntos
Peixes/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Praguicidas/toxicidade , Glândula Tireoide/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Clorpirifos/toxicidade , Poluição Ambiental/efeitos adversos , Metamorfose Biológica/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Glândula Tireoide/metabolismo , Hormônios Tireóideos/metabolismo
17.
Chemosphere ; 208: 469-475, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29886335

RESUMO

Dory, the animated surgeonfish created by the Pixar Animation studios, famously suffered from short-term memory loss leading to many adventures. In reality, many fishes have excellent cognitive abilities and are able to learn and retain important information such as the identity of predators. However, if and how cognition can be affected by anthropogenically altered oceanic conditions is poorly understood. Here, we examine the effect of a widely used pesticide, chlorpyrifos, on the retention of acquired predator recognition in post-larval stage of the surgeonfish Acanthurus triostegus. Through associative learning, post-larvae of A. triostegus were first observed to forage significantly less in the presence of conspecific alarm cues and alarm cues associated to a predator's odor. The retention of this anti-predator behavior was estimated to last between 2 and 5 days in the absence of pesticide. However, environmentally-relevant concentrations of chlorpyrifos (1 µg.L-1) induced the loss of this acquired predator recognition. This reduced ability to recognize learned predators is discussed as it may lead to more vulnerable fish communities in coastal areas subjected to organophosphate pesticide pollution.


Assuntos
Peixes/fisiologia , Larva/efeitos dos fármacos , Percepção Olfatória/efeitos dos fármacos , Praguicidas/toxicidade , Comportamento Predatório/efeitos dos fármacos , Animais , Larva/fisiologia
18.
Sci Rep ; 8(1): 9283, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29915303

RESUMO

Understanding the relationship between coral reef condition and recruitment potential is vital for the development of effective management strategies that maintain coral cover and biodiversity. Coral larvae (planulae) have been shown to use certain sensory cues to orient towards settlement habitats (e.g. the odour of live crustose coralline algae - CCA). However, the influence of auditory cues on coral recruitment, and any effect of anthropogenic noise on this process, remain largely unknown. Here, we determined the effect of protected reef (MPA), exploited reef (non-MPA) soundscapes, and a source of anthropogenic noise (boat) on the habitat preference for live CCA over dead CCA in the planula of two common Indo-Pacific coral species (Pocillopora damicornis and Acropora cytherea). Soundscapes from protected reefs significantly increased the phonotaxis of planulae of both species towards live CCA, especially when compared to boat noise. Boat noise playback prevented this preferential selection of live CCA as a settlement substrate. These results suggest that sources of anthropogenic noise such as motor boat can disrupt the settlement behaviours of coral planulae. Acoustic cues should be accounted for when developing management strategies aimed at maximizing larval recruitment to coral reefs.


Assuntos
Antozoários/fisiologia , Ecossistema , Ruído , Navios , Animais , Conservação dos Recursos Naturais , Polinésia
19.
PeerJ ; 5: e4019, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29158970

RESUMO

Acoustic recording has been recognized as a valuable tool for non-intrusive monitoring of the marine environment, complementing traditional visual surveys. Acoustic surveys conducted on coral ecosystems have so far been restricted to barrier reefs and to shallow depths (10-30 m). Since they may provide refuge for coral reef organisms, the monitoring of outer reef slopes and describing of the soundscapes of deeper environment could provide insights into the characteristics of different biotopes of coral ecosystems. In this study, the acoustic features of four different habitats, with different topographies and substrates, located at different depths from 10 to 100 m, were recorded during day-time on the outer reef slope of the north Coast of Moorea Island (French Polynesia). Barrier reefs appeared to be the noisiest habitats whereas the average sound levels at other habitats decreased with their distance from the reef and with increasing depth. However, sound levels were higher than expected by propagation models, supporting that these habitats possess their own sound sources. While reef sounds are known to attract marine larvae, sounds from deeper habitats may then also have a non-negligible attractive potential, coming into play before the reef itself.

20.
Sci Rep ; 7(1): 9165, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28831109

RESUMO

Lateralization, i.e. the preferential use of one side of the body, may convey fitness benefits for organisms within rapidly-changing environments, by optimizing separate and parallel processing of different information between the two brain hemispheres. In coral reef-fishes, the movement of larvae from planktonic to reef environments (recruitment) represents a major life-history transition. This transition requires larvae to rapidly identify and respond to sensory cues to select a suitable habitat that facilitates survival and growth. This 'recruitment' is critical for population persistence and resilience. In aquarium experiments, larval Acanthurus triostegus preferentially used their right-eye to investigate a variety of visual stimuli. Despite this, when held in in situ cages with predators, those larvae that previously favored their left-eye exhibited higher survival. These results support the "brain's right-hemisphere" theory, which predicts that the right-eye (i.e. left-hemisphere) is used to categorize stimuli while the left-eye (i.e. right-hemisphere) is used to inspect novel items and initiate rapid behavioral-responses. While these experiments confirm that being highly lateralized is ecologically advantageous, exposure to chlorpyrifos, a pesticide often inadvertently added to coral-reef waters, impaired visual-lateralization. This suggests that chemical pollutants could impair the brain function of larval fishes during a critical life-history transition, potentially impacting recruitment success.


Assuntos
Clorpirifos/efeitos adversos , Peixes/fisiologia , Praguicidas/efeitos adversos , Visão Ocular/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Recifes de Corais , Larva/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA