Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Pain Med ; 23(6): 1084-1094, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-34850195

RESUMO

BACKGROUND: Fibromyalgia syndrome (FMS) is the most common chronic widespread pain condition in rheumatology. Until recently, no clear pathophysiological mechanism for fibromyalgia had been established, resulting in management challenges. Recent research has indicated that serum immunoglobulin Gs (IgGs) may play a role in FMS. We undertook a research prioritisation exercise to identify the most pertinent research approaches that may lead to clinically implementable outputs. METHODS: Research priority setting was conducted in five phases: situation analysis; design; expert group consultation; interim recommendations; consultation and revision. A dialogue model was used, and an international multi-stakeholder expert group was invited. Clinical, patient, industry, funder, and scientific expertise was represented throughout. Recommendation-consensus was determined via a voluntary closed eSurvey. Reporting guideline for priority setting of health research were employed to support implementation and maximise impact. RESULTS: Arising from the expert group consultation (n = 29 participants), 39 interim recommendations were defined. A response rate of 81.5% was achieved in the consensus survey. Six recommendations were identified as high priority- and 15 as medium level priority. The recommendations range from aspects of fibromyalgia features that should be considered in future autoantibody research, to specific immunological investigations, suggestions for trial design in FMS, and therapeutic interventions that should be assessed in trials. CONCLUSIONS: By applying the principles of strategic priority setting we directed research towards that which is implementable, thereby expediating the benefit to the FMS patient population. These recommendations are intended for patients, international professionals and grant-giving bodies concerned with research into causes and management of patients with fibromyalgia syndrome.


Assuntos
Dor Crônica , Fibromialgia , Autoanticorpos , Fibromialgia/terapia , Humanos , Imunoglobulina G , Inquéritos e Questionários
2.
J Neurosci ; 39(40): 7840-7852, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31451581

RESUMO

Transient receptor potential melastatin 3 (TRPM3) is a nonselective cation channel that is inhibited by Gßγ subunits liberated following activation of Gαi/o protein-coupled receptors. Here, we demonstrate that TRPM3 channels are also inhibited by Gßγ released from Gαs and Gαq Activation of the Gs-coupled adenosine 2B receptor and the Gq-coupled muscarinic acetylcholine M1 receptor inhibited the activity of TRPM3 heterologously expressed in HEK293 cells. This inhibition was prevented when the Gßγ sink ßARK1-ct (C terminus of ß-adrenergic receptor kinase-1) was coexpressed with TRPM3. In neurons isolated from mouse dorsal root ganglion (DRG), native TRPM3 channels were inhibited by activating Gs-coupled prostaglandin-EP2 and Gq-coupled bradykinin B2 (BK2) receptors. The Gi/o inhibitor pertussis toxin and inhibitors of PKA and PKC had no effect on EP2- and BK2-mediated inhibition of TRPM3, demonstrating that the receptors did not act through Gαi/o or through the major protein kinases activated downstream of G-protein-coupled receptor (GPCR) activation. When DRG neurons were dialyzed with GRK2i, which sequesters free Gßγ protein, TRPM3 inhibition by EP2 and BK2 was significantly reduced. Intraplantar injections of EP2 or BK2 agonists inhibited both the nocifensive response evoked by TRPM3 agonists, and the heat hypersensitivity produced by Freund's Complete Adjuvant (FCA). Furthermore, FCA-induced heat hypersensitivity was completely reversed by the selective TRPM3 antagonist ononetin in WT mice and did not develop in Trpm3-/- mice. Our results demonstrate that TRPM3 is subject to promiscuous inhibition by Gßγ protein in heterologous expression systems, primary neurons and in vivo, and suggest a critical role for this ion channel in inflammatory heat hypersensitivity.SIGNIFICANCE STATEMENT The ion channel TRPM3 is widely expressed in the nervous system. Recent studies showed that Gαi/o-coupled GPCRs inhibit TRPM3 through a direct interaction between Gßγ subunits and TRPM3. Since Gßγ proteins can be liberated from other Gα subunits than Gαi/o, we examined whether activation of Gs- and Gq-coupled receptors also influence TRPM3 via Gßγ. Our results demonstrate that activation of Gs- and Gq-coupled GPCRs in recombinant cells and sensory neurons inhibits TRPM3 via Gßγ liberation. We also demonstrated that Gs- and Gq-coupled receptors inhibit TRPM3 in vivo, thereby reducing pain produced by activation of TRPM3, and inflammatory heat hypersensitivity. Our results identify Gßγ inhibition of TRPM3 as an effector mechanism shared by the major Gα subunits.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP/fisiologia , Subunidades gama da Proteína de Ligação ao GTP/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Canais de Cátion TRPM/fisiologia , Animais , Comportamento Animal , Feminino , Subunidades beta da Proteína de Ligação ao GTP/antagonistas & inibidores , Subunidades gama da Proteína de Ligação ao GTP/antagonistas & inibidores , Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , Células HEK293 , Humanos , Hiperalgesia/induzido quimicamente , Hiperalgesia/fisiopatologia , Hiperalgesia/psicologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/fisiologia , Nociceptores/efeitos dos fármacos , Toxina Pertussis/farmacologia , Receptor A2B de Adenosina/fisiologia , Receptor Muscarínico M1/fisiologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Transdução de Sinais/fisiologia , Canais de Cátion TRPM/antagonistas & inibidores , Canais de Cátion TRPM/genética
3.
J Biol Chem ; 290(24): 15185-96, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-25903127

RESUMO

Streptozotocin (STZ)-induced diabetes is the most commonly used animal model of diabetes. Here, we have demonstrated that intraplantar injections of low dose STZ evoked acute polymodal hypersensitivities in mice. These hypersensitivities were inhibited by a TRPA1 antagonist and were absent in TRPA1-null mice. In wild type mice, systemic STZ treatment (180 mg/kg) evoked a loss of cold and mechanical sensitivity within an hour of injection, which lasted for at least 10 days. In contrast, Trpa1(-/-) mice developed mechanical, cold, and heat hypersensitivity 24 h after STZ. The TRPA1-dependent sensory loss produced by STZ occurs before the onset of diabetes and may thus not be readily distinguished from the similar sensory abnormalities produced by the ensuing diabetic neuropathy. In vitro, STZ activated TRPA1 in isolated sensory neurons, TRPA1 cell lines, and membrane patches. Mass spectrometry studies revealed that STZ oxidizes TRPA1 cysteines to disulfides and sulfenic acids. Furthermore, incubation of tyrosine with STZ resulted in formation of dityrosine, suggesting formation of peroxynitrite. Functional analysis of TRPA1 mutants showed that cysteine residues that were oxidized by STZ were important for TRPA1 responsiveness to STZ. Our results have identified oxidation of TRPA1 cysteine residues, most likely by peroxynitrite, as a novel mechanism of action of STZ. Direct stimulation of TRPA1 complicates the interpretation of results from STZ models of diabetic sensory neuropathy and strongly argues that more refined models of diabetic neuropathy should replace the use of STZ.


Assuntos
Ácido Peroxinitroso/metabolismo , Estreptozocina/farmacologia , Canais de Potencial de Receptor Transitório/efeitos dos fármacos , Analgésicos/farmacologia , Animais , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oxirredução , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/genética
4.
FASEB J ; 27(4): 1664-73, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23271050

RESUMO

The underlying mechanisms of itch are poorly understood. We have investigated a model involving the chemoattractant leukotriene B4 (LTB4) that is up-regulated in common skin diseases. Intradermal injection of LTB4 (0.1 nmol/site) into female CD1 mice induced significant scratching movements (used as an itch index) compared with vehicle-injected (0.1% bovine serum albumin-saline) mice. Intraperitoneal transient receptor potential (TRP) channel antagonist treatment significantly inhibited itch as follows: TRP vanilloid 1 (TRPV1) antagonist SB366791 (0.5 mg/kg, by 97%) and the TRP ankyrin 1 (TRPA1) antagonists TCS 5861528 (10 mg/kg; 82%) and HC-030031 (100 mg/kg; 76%). Leukotriene B4 receptor 2 antagonism by LY255283 (5 mg/kg i.p.; 62%) reduced itch. Neither TRPV1-knockout (TRPV1-KO) nor TRPA1-knockout (TRPA1-KO mice exhibited LTB4-induced itch compared with their wild-type counterparts. The reactive oxygen species scavengers N-acetylcysteine (NAC; 204 mg/kg i.p.; 86%) or superoxide dismutase (SOD; 10 mg/kg i.p.; 83%) also inhibited itch. LTB4-induced superoxide release was attenuated by TCS 5861528 (56%) and HC-030031 (66%), NAC (58%), SOD (50%), and LY255283 (59%) but not by the leukotriene B4 receptor 1 antagonist U-75302 (9 nmol/site) or SB366791. Itch, superoxide, and myeloperoxidase generation were inhibited by the leukocyte migration inhibitor fucoidan (10 mg/kg i.v.) by 80, 61, and 34%, respectively. Myeloperoxidase activity was also reduced by SB366791 (35%) and SOD (28%). TRPV1-KO mice showed impaired myeloperoxidase release, whereas TRPA1-KO mice exhibited diminished production of superoxide. This result provides novel evidence that TRPA1 and TRPV1 contribute to itch via distinct mechanisms.


Assuntos
Leucócitos/metabolismo , Leucotrieno B4/farmacologia , Superóxidos/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Anquirinas/farmacologia , Feminino , Leucócitos/efeitos dos fármacos , Camundongos , Camundongos Knockout , Prurido/tratamento farmacológico , Prurido/metabolismo , Receptores do Leucotrieno B4/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo
5.
Handb Exp Pharmacol ; 222: 207-45, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24756708

RESUMO

TRPV1 is a well-characterised channel expressed by a subset of peripheral sensory neurons involved in pain sensation and also at a number of other neuronal and non-neuronal sites in the mammalian body. Functionally, TRPV1 acts as a sensor for noxious heat (greater than ~42 °C). It can also be activated by some endogenous lipid-derived molecules, acidic solutions (pH < 6.5) and some pungent chemicals and food ingredients such as capsaicin, as well as by toxins such as resiniferatoxin and vanillotoxins. Structurally, TRPV1 subunits have six transmembrane (TM) domains with intracellular N- (containing 6 ankyrin-like repeats) and C-termini and a pore region between TM5 and TM6 containing sites that are important for channel activation and ion selectivity. The N- and C- termini have residues and regions that are sites for phosphorylation/dephosphorylation and PI(4,5)P2 binding, which regulate TRPV1 sensitivity and membrane insertion. The channel has several interacting proteins, some of which (e.g. AKAP79/150) are important for TRPV1 phosphorylation. Four TRPV1 subunits form a non-selective, outwardly rectifying ion channel permeable to monovalent and divalent cations with a single-channel conductance of 50-100 pS. TRPV1 channel kinetics reveal multiple open and closed states, and several models for channel activation by voltage, ligand binding and temperature have been proposed. Studies with TRPV1 agonists and antagonists and Trpv1 (-/-) mice have suggested a role for TRPV1 in pain, thermoregulation and osmoregulation, as well as in cough and overactive bladder. TRPV1 antagonists have advanced to clinical trials where findings of drug-induced hyperthermia and loss of heat sensitivity have raised questions about the viability of this therapeutic approach.


Assuntos
Canais de Cátion TRPV/metabolismo , Animais , Regulação da Expressão Gênica , Genótipo , Humanos , Ativação do Canal Iônico , Potenciais da Membrana , Camundongos , Camundongos Knockout , Fenótipo , Fosfatidilinositóis/metabolismo , Fosforilação , Conformação Proteica , Processamento de Proteína Pós-Traducional , Transporte Proteico , Transdução de Sinais , Relação Estrutura-Atividade , Canais de Cátion TRPV/química , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/genética
6.
J Pain ; 25(1): 88-100, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37524219

RESUMO

The platinum chemotherapeutic oxaliplatin produces dose-limiting pain, dysesthesia, and cold hypersensitivity in most patients immediately after infusion. An improved understanding of the mechanisms underlying these symptoms is urgently required to facilitate the development of symptomatic or preventative therapies. In this study, we have used skin-saphenous nerve recordings in vitro and behavioral experiments in mice to characterize the direct effects of oxaliplatin on different types of sensory afferent fibers. Our results confirmed that mice injected with oxaliplatin rapidly develop mechanical and cold hypersensitivities. We further noted profound changes to A fiber activity after the application of oxaliplatin to the receptive fields in the skin. Most oxaliplatin-treated Aδ- and rapidly adapting Aß-units lost mechanical sensitivity, but units that retained responsiveness additionally displayed a novel, aberrant cold sensitivity. Slowly adapting Aß-units did not display mechanical tachyphylaxis, and a subset of these fibers was sensitized to mechanical and cold stimulation after oxaliplatin treatment. C fiber afferents were less affected by acute applications of oxaliplatin, but a subset gained cold sensitivity. Taken together, our findings suggest that direct effects on peripheral A fibers play a dominant role in the development of acute oxaliplatin-induced cold hypersensitivity, numbness, and dysesthesia. PERSPECTIVE: The chemotherapeutic drug oxaliplatin rapidly gives rise to dose-limiting cold pain and dysesthesia. Here, we have used behavioral and electrophysiological studies of mice to characterize the responsible neurons. We show that oxaliplatin directly confers aberrant cold responsiveness to subsets of A-fibers while silencing other fibers of the same type.


Assuntos
Antineoplásicos , Síndromes Periódicas Associadas à Criopirina , Humanos , Camundongos , Animais , Oxaliplatina/efeitos adversos , Parestesia , Síndromes Periódicas Associadas à Criopirina/induzido quimicamente , Dor , Hiperalgesia/induzido quimicamente , Antineoplásicos/efeitos adversos
7.
Pain Rep ; 9(4): e1167, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38873615

RESUMO

A 2-day closed workshop was held in Liverpool, United Kingdom, to discuss the results of research concerning symptom-based disorders (SBDs) caused by autoantibodies, share technical knowledge, and consider future plans. Twenty-two speakers and 14 additional participants attended. This workshop set out to consolidate knowledge about the contribution of autoantibodies to SBDs. Persuasive evidence for a causative role of autoantibodies in disease often derives from experimental "passive transfer" approaches, as first established in neurological research. Here, serum immunoglobulin (IgM or IgG) is purified from donated blood and transferred to rodents, either systemically or intrathecally. Rodents are then assessed for the expression of phenotypes resembling the human condition; successful phenotype transfer is considered supportive of or proof for autoimmune pathology. Workshop participants discussed passive transfer models and wider evidence for autoantibody contribution to a range of SBDs. Clinical trials testing autoantibody reduction were presented. Cornerstones of both experimental approaches and clinical trial parameters in this field were distilled and presented in this article. Mounting evidence suggests that immunoglobulin transfer from patient donors often induces the respective SBD phenotype in rodents. Understanding antibody binding epitopes and downstream mechanisms will require substantial research efforts, but treatments to reduce antibody titres can already now be evaluated.

8.
J Pharmacol Exp Ther ; 342(2): 389-98, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22566669

RESUMO

The therapeutic potential of transient receptor potential vanilloid type 1 (TRPV1) antagonists for chronic pain has been recognized for more than a decade. However, preclinical and clinical data revealed that acute pharmacological blockade of TRPV1 perturbs thermoregulation, resulting in hyperthermia, which is a major hurdle for the clinical development of these drugs. Here, we describe the properties of 7-tert-butyl-6-(4-chloro-phenyl)-2-thioxo-2,3-dihydro-1H-pyrido[2,3-d]pyrimidin-4-one (BCTP), a TRPV1 antagonist with excellent analgesic properties that does not induce significant hyperthermia in rodents at doses providing maximal analgesia. BCTP is a classic polymodal inhibitor of TRPV1, blocking activation of the human channel by capsaicin and low pH with IC(50) values of 65.4 and 26.4 nM, respectively. Similar activity was observed with rat TRPV1, and the inhibition by BCTP was competitive and reversible. BCTP also blocked heat-induced activation of TRPV1. In rats, the inhibition of capsaicin-induced mechanical hyperalgesia was observed with a D(50) value of 2 mg/kg p.o. BCTP also reversed visceral hypersensitivity and somatic inflammatory pain, and using a model of neuropathic pain in TRPV1 null mice we confirmed that its analgesic properties were solely through the inhibition of TRPV1. We were surprised to find that BCTP administered orally induced only a maximal 0.6°C increase in core body temperature at the highest tested doses (30 and 100 mg/kg), contrasting markedly with N-[4-({6-[4-(trifluoromethyl)phenyl]pyrimidin-4-yl}oxy)-1,3-benzothiazol-2-yl]acetamide (AMG517), a clinically tested TRPV1 antagonist, which induced marked hyperthermia (>1°C) at doses eliciting submaximal reversal of capsaicin-induced hyperalgesia. The combined data indicate that TRPV1 antagonists with a classic polymodal inhibition profile can be identified where the analgesic action is separated from the effects on body temperature.


Assuntos
Analgésicos/farmacologia , Febre/tratamento farmacológico , Hipersensibilidade/tratamento farmacológico , Pirimidinonas/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Tionas/farmacologia , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Animais , Benzotiazóis/efeitos adversos , Temperatura Corporal/efeitos dos fármacos , Regulação da Temperatura Corporal/efeitos dos fármacos , Células CHO , Capsaicina/farmacologia , Cricetinae , Febre/metabolismo , Humanos , Hiperalgesia/induzido quimicamente , Hipersensibilidade/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pirimidinas/efeitos adversos , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Canais de Cátion TRPV/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo
9.
Arthritis Rheum ; 63(3): 819-29, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21360511

RESUMO

OBJECTIVE: To investigate the involvement of transient receptor potential ankyrin 1 (TRPA1) in inflammatory hyperalgesia mediated by tumor necrosis factor α(TNFα) and joint inflammation. METHODS: Mechanical hyperalgesia was assessed in CD1 mice, mice lacking functional TRP vanilloid 1 (TRPV1-/-) or TRPA1 (TRPA1-/-), or respective wildtype (WT) mice. An automated von Frey system was used, following unilateral intraplantar injection of TNFα or intraarticular injection of Freund's complete adjuvant (CFA). Knee swelling and histologic changes were determined in mice treated with intraarticular injections of CFA. RESULTS: TNFα induced cyclooxygenase-independent bilateral mechanical hyperalgesia in CD1 mice. The selective TRPV1 receptor antagonist SB-366791 had no effect on mechanical hyperalgesia when it was coinjected with TNFα, but intrathecally administered SB- 366791 attenuated bilateral hyperalgesia, indicating the central but not peripheral involvement of TRPV1 receptors. A decrease in pain sensitivity was also observed in TRPV1-/- mice. Intraplantar coadministration of the TRPA1 receptor antagonist AP-18 with TNFα inhibited bilateral hyperalgesia. Intrathecal treatment with AP-18 also reduced TNFα-induced hyperalgesia. CFA-induced mechanical hyperalgesia in CD1 mice was attenuated by AP-18 (administered by intraarticular injection 22 hours after the administration of CFA). Furthermore, intraarticular CFA­induced ipsilateral mechanical hyperalgesia was maintained for 3 weeks in TRPA1 WT mice. In contrast, TRPA1-/- mice exhibited mechanical hyperalgesia for only 24 hours after receiving CFA. CONCLUSION: Evidence suggests that endogenous activation of peripheral TRPA1 receptors plays a critical role in the development of TNFα-induced mechanical hyperalgesia and in sustaining the mechanical hyperalgesia observed after intraaarticular injection of CFA. These results suggest that blockade of TRPA1 receptors may be beneficial in reducing the chronic pain associated with arthritis.


Assuntos
Artrite Experimental/imunologia , Hiperalgesia/imunologia , Canais de Cátion TRPV/imunologia , Canais de Potencial de Receptor Transitório/imunologia , Fator de Necrose Tumoral alfa/imunologia , Adjuvantes Imunológicos/farmacologia , Anilidas/farmacologia , Animais , Artralgia/induzido quimicamente , Artralgia/imunologia , Artrite Experimental/induzido quimicamente , Cinamatos/farmacologia , Modelos Animais de Doenças , Feminino , Adjuvante de Freund/farmacologia , Hiperalgesia/induzido quimicamente , Injeções Intra-Articulares , Injeções Espinhais , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Canal de Cátion TRPA1 , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/genética , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/genética , Fator de Necrose Tumoral alfa/farmacologia
10.
Proc Natl Acad Sci U S A ; 106(20): 8374-9, 2009 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-19416844

RESUMO

The antifungal and amoebicidal drug clioquinol (CQ) was withdrawn from the market when it was linked to an epidemic of subacute myelo-optico-neuropathy (SMON). Clioquinol exerts its anti-parasitic actions by acting as a Cu/Zn chelator and ionophore. Here we show that local injections of CQ produce mechanical hyperalgesia and cold hypersensitivity through a mechanism involving TRPA1 in mice. We also show that CQ activates TRPA1 in a Zn(2+)-dependent manner. Using a different Zn(2+)-ionophore, zinc pyrithione (ZnPy), we demonstrate that low, nanomolar concentrations of intracellular Zn(2+) ([Zn(2+)](i)) stimulate TRPA1. Direct application of Zn(2+) to the intracellular face of excised, inside-out patches activates TRPA1 with an EC(50) value of 7.5 +/- 1 nM. TRPA1 is expressed in a subpopulation of nociceptive dorsal root ganglion (DRG) neurons, where it acts as a sensory receptor for environmental irritants and oxidants. Using cultured DRG neurons from wild-type and TRPA1-deficient mice, we demonstrate that TRPA1 is the principal excitatory receptor for increased [Zn(2+)](i) in DRG neurons. In conclusion, we have discovered that TRPA1 acts a sensor of intracellular Zn(2+), and that Zn(2+) ionophores, such as CQ and ZnPy, activate TRPA1 by increasing [Zn(2+)](i). We also demonstrate that CQ-evoked mechanical hyperalgesia and cold allodynia require TRPA1 in vivo.


Assuntos
Clioquinol/farmacologia , Piridinas/farmacologia , Tionas/farmacologia , Canais de Potencial de Receptor Transitório/metabolismo , Zinco/análise , Animais , Antifúngicos , Antiparasitários , Células Cultivadas , Quelantes/farmacologia , Gânglios Espinais , Hiperalgesia/induzido quimicamente , Camundongos , Neurônios , Canal de Cátion TRPA1 , Sensação Térmica/efeitos dos fármacos
11.
Diabetes ; 71(4): 837-852, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35073578

RESUMO

Serum progesterone sulfates were evaluated in the etiology of gestational diabetes mellitus (GDM). Serum progesterone sulfates were measured using ultra-performance liquid chromatography-tandem mass spectrometry in four patient cohorts: 1) the Hyperglycemia and Adverse Pregnancy Outcomes study; 2) London-based women of mixed ancestry and 3) U.K.-based women of European ancestry with or without GDM; and 4) 11-13 weeks pregnant women with BMI ≤25 or BMI ≥35 kg/m2 with subsequent uncomplicated pregnancies or GDM. Glucose-stimulated insulin secretion (GSIS) was evaluated in response to progesterone sulfates in mouse islets and human islets. Calcium fluorescence was measured in HEK293 cells expressing transient receptor potential cation channel subfamily M member 3 (TRPM3). Computer modeling using Molecular Operating Environment generated three-dimensional structures of TRPM3. Epiallopregnanolone sulfate (PM5S) concentrations were reduced in GDM (P < 0.05), in women with higher fasting plasma glucose (P < 0.010), and in early pregnancy samples from women who subsequently developed GDM with BMI ≥35 kg/m2 (P < 0.05). In islets, 50 µmol/L PM5S increased GSIS by at least twofold (P < 0.001); isosakuranetin (TRPM3 inhibitor) abolished this effect. PM5S increased calcium influx in TRPM3-expressing HEK293 cells. Computer modeling and docking showed identical positioning of PM5S to the natural ligand in TRPM3. PM5S increases GSIS and is reduced in GDM serum. The activation of GSIS by PM5S is mediated by TRPM3 in both mouse and human islets.


Assuntos
Diabetes Gestacional , Canais de Cátion TRPM , Animais , Glicemia/metabolismo , Cálcio/metabolismo , Feminino , Células HEK293 , Humanos , Insulina/metabolismo , Secreção de Insulina , Camundongos , Gravidez , Progesterona , Sulfatos/metabolismo
12.
J Pharmacol Exp Ther ; 337(1): 117-24, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21205926

RESUMO

This study explores the in vivo effects of the proposed transient receptor potential ankyrin 1 (TRPA1) agonist 4-oxo-2-nonenal (4-ONE). Pharmacological inhibitors and genetically modified mice were used to investigate the ability of 4-ONE to act via TRPA1 receptors and possible mechanisms involving transient receptor potential vanilloid 1 (TRPV1). We hypothesized that 4-ONE activates sensory nerves, via TRPA1 or possibly TRPV1, and thus triggers mechanical hyperalgesia, edema formation, and vasodilatation in mice. An automated dynamic plantar aesthesiometer was used to determine hind paw withdrawal thresholds, and a laser Doppler flowmeter was used to measure skin blood flow. Edema formation was determined by measuring paw weights and thickness. 4-ONE (10 nmol) triggers unilateral mechanical hyperalgesia, edema formation, and vasodilatation in mice and is shown here to exhibit TRPA1-dependent and -independent effects. Neurogenic vasodilatation and mechanical hyperalgesia at 0.5 h postinjection were significantly greater in TRPA1 wild-type (WT) mice compared with TRPA1 knockout (KO) mice. Edema formation throughout the time course as well as mechanical hyperalgesia from 1 to 4 h postinjection were similar in WT and TRPA1 KO mice. Studies involving TRPV1 KO mice revealed no evidence of TRPV1 involvement or interactions between TRPA1 and TRPV1 in mediating the in vivo effects of 4-ONE. Previously, 4-ONE was shown to be a potent TRPA1 agonist in vitro. We demonstrate its ability to mediate vasodilatation and certain nociceptive effects in vivo. These data indicate the potential of TRPA1 as an oxidant sensor for vasodilator responses in vivo. However, 4-ONE also triggers TRPA1-independent effects that relate to edema formation and pain.


Assuntos
Aldeídos/farmacologia , Medição da Dor/efeitos dos fármacos , Canais de Potencial de Receptor Transitório/agonistas , Canais de Potencial de Receptor Transitório/fisiologia , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia , Aldeídos/toxicidade , Animais , Feminino , Hiperalgesia/induzido quimicamente , Hiperalgesia/fisiopatologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxidantes/agonistas , Oxidantes/fisiologia , Medição da Dor/métodos , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/deficiência , Sistema Vasomotor/efeitos dos fármacos , Sistema Vasomotor/fisiologia
13.
J Clin Invest ; 131(13)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34196305

RESUMO

Fibromyalgia syndrome (FMS) is characterized by widespread pain and tenderness, and patients typically experience fatigue and emotional distress. The etiology and pathophysiology of fibromyalgia are not fully explained and there are no effective drug treatments. Here we show that IgG from FMS patients produced sensory hypersensitivity by sensitizing nociceptive neurons. Mice treated with IgG from FMS patients displayed increased sensitivity to noxious mechanical and cold stimulation, and nociceptive fibers in skin-nerve preparations from mice treated with FMS IgG displayed an increased responsiveness to cold and mechanical stimulation. These mice also displayed reduced locomotor activity, reduced paw grip strength, and a loss of intraepidermal innervation. In contrast, transfer of IgG-depleted serum from FMS patients or IgG from healthy control subjects had no effect. Patient IgG did not activate naive sensory neurons directly. IgG from FMS patients labeled satellite glial cells and neurons in vivo and in vitro, as well as myelinated fiber tracts and a small number of macrophages and endothelial cells in mouse dorsal root ganglia (DRG), but no cells in the spinal cord. Furthermore, FMS IgG bound to human DRG. Our results demonstrate that IgG from FMS patients produces painful sensory hypersensitivities by sensitizing peripheral nociceptive afferents and suggest that therapies reducing patient IgG titers may be effective for fibromyalgia.


Assuntos
Fibromialgia/imunologia , Fibromialgia/fisiopatologia , Animais , Estudos de Casos e Controles , Modelos Animais de Doenças , Feminino , Fibromialgia/etiologia , Gânglios Espinais/fisiopatologia , Humanos , Imunização Passiva , Imunoglobulina G/administração & dosagem , Imunoglobulina G/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nociceptores/imunologia , Nociceptores/fisiologia , Dor/fisiopatologia , Limiar da Dor/fisiologia
14.
Mol Pain ; 6: 4, 2010 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-20092626

RESUMO

BACKGROUND: The cooling agents menthol and icilin act as agonists at TRPM8 and TRPA1. In vitro, activation of TRPM8 by icilin and cold, but not menthol, is dependent on the activity of a sub-type of phospholipase A2, iPLA2. Lysophospholipids (e.g. LPC) produced by PLA2 activity can also activate TRPM8. The role of TRPA1 as a primary cold sensor in vitro is controversial, although there is evidence that TRPA1 plays a role in behavioural responses to noxious cold stimuli. In this study, we have investigated the roles of TRPM8 and TRPA1 and the influence of iPLA2 on noxious cold sensitivities in naïve animals and after local administration of menthol, icilin and LPC. The roles of the channels in cold sensitivity were investigated in mice lacking either TRPM8 (Trpm8-/-) or TRPA1 (Trpa1-/-). RESULTS: Intraplantar administration of icilin evoked a dose-dependent increase in sensitivity to a 10 degrees C stimulus that was inhibited by iPLA2 inhibition with BEL. In contrast the cold hypersensitivities elicited by intraplantar menthol and LPC were not inhibited by BEL treatment. BEL had no effect on basal cold sensitivity and mechanical hypersensitivities induced by the TRPV1 agonist, capsaicin, and the P2X3 agonist alpha,beta-methylene ATP. Both Trpm8-/- and Trpa1-/- mice showed longer latencies for paw withdrawal from a 10 degrees C stimulus than wild-type littermates. Cold hypersensitivities induced by either icilin or LPC were absent in Trpm8-/- mice but were retained in Trpa1-/- mice. In contrast, cold hypersensitivity evoked by menthol was present in Trpm8-/- mice but was lost in Trpa1-/- mice. CONCLUSIONS: The findings that iPLA2 inhibition blocked the development of cold hypersensitivity after administration of icilin but failed to affect menthol-induced hypersensitivity agree well with our earlier in vitro data showing a differential effect of iPLA2 inhibition on the agonist activities of these agents. The ability of LPC to induce cold hypersensitivity supports a role for iPLA2 in modulating TRPM8 activity in vivo. Studies on genetically modified mice demonstrated that the effects of icilin and LPC were mediated by TRPM8 and not TRPA1. In contrast, menthol-induced cold hypersensitivity was dependent on expression of TRPA1 and not TRPM8.


Assuntos
Temperatura Baixa/efeitos adversos , Fosfolipases A2 do Grupo VI/metabolismo , Hiperalgesia/metabolismo , Canais de Cátion TRPM/metabolismo , Sensação Térmica/fisiologia , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Antipruriginosos/farmacologia , Relação Dose-Resposta a Droga , Pé/inervação , Pé/fisiologia , Fosfolipases A2 do Grupo VI/antagonistas & inibidores , Fosfolipases A2 do Grupo VI/genética , Hiperalgesia/induzido quimicamente , Hiperalgesia/fisiopatologia , Masculino , Mentol/farmacologia , Camundongos , Camundongos Knockout , Naftalenos/farmacologia , Nociceptores/efeitos dos fármacos , Nociceptores/fisiologia , Medição da Dor/métodos , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Pirimidinonas/farmacologia , Pironas/farmacologia , Ratos , Ratos Wistar , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/fisiologia , Canal de Cátion TRPA1 , Canais de Cátion TRPM/agonistas , Canais de Cátion TRPM/genética , Sensação Térmica/efeitos dos fármacos , Canais de Potencial de Receptor Transitório/agonistas , Canais de Potencial de Receptor Transitório/genética
15.
Diabetes ; 69(12): 2667-2677, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32994272

RESUMO

Animal models are important tools in diabetes research because ethical and logistical constraints limit access to human tissue. ß-Cell dysfunction is a common contributor to the pathogenesis of most types of diabetes. Spontaneous hyperglycemia was developed in a colony of C57BL/6J mice at King's College London (KCL). Sequencing identified a mutation in the Ins2 gene, causing a glycine-to-serine substitution at position 32 on the B chain of the preproinsulin 2 molecule. Mice with the Ins2 +/G32S mutation were named KCL Ins2 G32S (KINGS) mice. The same mutation in humans (rs80356664) causes dominantly inherited neonatal diabetes. Mice were characterized, and ß-cell function was investigated. Male mice became overtly diabetic at ∼5 weeks of age, whereas female mice had only slightly elevated nonfasting glycemia. Islets showed decreased insulin content and impaired glucose-induced insulin secretion, which was more severe in males. Transmission electron microscopy and studies of gene and protein expression showed ß-cell endoplasmic reticulum (ER) stress in both sexes. Despite this, ß-cell numbers were only slightly reduced in older animals. In conclusion, the KINGS mouse is a novel model of a human form of diabetes that may be useful to study ß-cell responses to ER stress.


Assuntos
Diabetes Mellitus/genética , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/fisiologia , Células Secretoras de Insulina/metabolismo , Animais , Ecossistema , Feminino , Teste de Tolerância a Glucose , Humanos , Insulina/sangue , Masculino , Camundongos , Camundongos Endogâmicos , Mutação , Polimorfismo de Nucleotídeo Único
16.
J Neurosci ; 28(10): 2485-94, 2008 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-18322093

RESUMO

Transient receptor potential A1 (TRPA1) is expressed in a subset of nociceptive sensory neurons where it acts as a sensor for environmental irritants, including acrolein, and some pungent plant ingredients such as allyl isothiocyanate and cinnamaldehyde. These exogenous compounds activate TRPA1 by covalent modification of cysteine residues. We have used electrophysiological methods and measurements of intracellular calcium concentration ([Ca(2+)](i)) to show that TRPA1 is activated by several classes of endogenous thiol-reactive molecules. TRPA1 was activated by hydrogen peroxide (H(2)O(2); EC(50), 230 microM), by endogenously occurring alkenyl aldehydes (EC(50): 4-hydroxynonenal 19.9 microM, 4-oxo-nonenal 1.9 microM, 4-hydroxyhexenal 38.9 microM) and by the cyclopentenone prostaglandin, 15-deoxy-delta(12,14)-prostaglandin J(2) (15d-PGJ(2), EC(50): 5.6 microM). The effect of H(2)O(2) was reversed by treatment with dithiothreitol indicating that H(2)O(2) acts by promoting the formation of disulfide bonds whereas the actions of the alkenyl aldehydes and 15d-PGJ(2) were not reversed, suggesting that these agents form Michael adducts. H(2)O(2) and the naturally occurring alkenyl aldehydes and 15d-PGJ(2) acted on a subset of isolated rat and mouse sensory neurons [approximately 25% of rat dorsal root ganglion (DRG) and approximately 50% of nodose ganglion neurons] to evoke a depolarizing inward current and an increase in [Ca(2+)](i) in TRPA1 expressing neurons. The abilities of H(2)O(2), alkenyl aldehydes and 15d-PGJ(2) to raise [Ca(2+)](i) in mouse DRG neurons were greatly reduced in neurons from trpa1(-/-) mice. Furthermore, intraplantar injection of either H(2)O(2) or 15d-PGJ2 evoked a nocifensive/pain response in wild-type mice, but not in trpa1(-/-) mice. These data demonstrate that multiple agents produced during episodes of oxidative stress can activate TRPA1 expressed in sensory neurons.


Assuntos
Estresse Oxidativo/fisiologia , Células Receptoras Sensoriais/fisiologia , Canais de Potencial de Receptor Transitório/metabolismo , Aldeídos/farmacologia , Animais , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Feminino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/fisiologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/biossíntese , Canais de Potencial de Receptor Transitório/genética
17.
J Cell Biol ; 158(7): 1251-62, 2002 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-12356869

RESUMO

The neurotropic virus, herpes simplex type 1 (HSV-1), inhibits the excitability of peripheral mammalian neurons, but the molecular mechanism of this effect has not been identified. Here, we use voltage-clamp measurement of ionic currents and an antibody against sodium channels to show that loss of excitability results from the selective, precipitous, and complete internalization of voltage-activated sodium channel proteins from the plasma membrane of neurons dissociated from rat dorsal root ganglion. The internalization process requires viral protein synthesis but not viral encapsulation, and does not alter the density of voltage-activated calcium or potassium channels. However, internalization is blocked completely when viruses lack the neurovirulence factor, infected cell protein 34.5, or when endocytosis is inhibited with bafilomycin A(1) or chloroquine. Although it has been recognized for many years that viruses cause cell pathology by interfering with signal transduction pathways, this is the first example of viral pathology resulting from selective internalization of an integral membrane protein. In studying the HSV-induced redistribution of sodium channels, we have uncovered a previously unknown pathway for the rapid and dynamic control of excitability in sensory neurons by internalization of sodium channels.


Assuntos
Endocitose/fisiologia , Gânglios Espinais/metabolismo , Herpes Simples/metabolismo , Macrolídeos , Canais de Sódio/metabolismo , Potenciais de Ação , Animais , Antibacterianos/farmacologia , Antimaláricos/farmacologia , Cloroquina/farmacologia , Endocitose/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Feminino , Gânglios Espinais/virologia , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/metabolismo , Humanos , Técnicas Imunoenzimáticas , Masculino , Neurônios/metabolismo , Neurônios/virologia , ATPases Translocadoras de Prótons/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Proteínas Virais/genética , Proteínas Virais/metabolismo , Ativação Viral
18.
Bioorg Med Chem Lett ; 19(1): 119-22, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19014884

RESUMO

The synthesis and identification of sulfonamido-aryl ethers as potent bradykinin B1 receptor antagonists from a approximately 60,000 member encoded combinatorial library are reported. Two distinct series of compounds exhibiting different structure-activity relationships were identified in a bradykinin B1 whole-cell receptor-binding assay. Specific examples exhibit K(i) values of approximately 10nM.


Assuntos
Antagonistas de Receptor B1 da Bradicinina , Éteres/síntese química , Sulfonamidas/síntese química , Animais , Linhagem Celular , Técnicas de Química Combinatória , Humanos , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Sulfonamidas/farmacologia
19.
Pain ; 160(12): 2855-2865, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31343542

RESUMO

Complex regional pain syndrome (CRPS) is a posttraumatic pain condition with an incompletely understood pathophysiological basis. Here, we have examined the cellular basis of pain in CRPS using behavioral and electrophysiological methods in mice treated with IgG from CRPS patients, in combination with a paw incision. Mice were subjected to a hind paw skin-muscle incision alone, or in combination with administration of IgG purified from either healthy control subjects or patients with persistent CRPS. Nociceptive function was examined behaviorally in vivo, and electrophysiologically in vitro using skin-nerve preparations to study the major classes of mechanosensitive single units. Administration of IgG from CRPS patients exacerbated and prolonged the postsurgical hypersensitivity to noxious mechanical, cold, and heat stimulation, but did not influence tactile sensitivity after a paw incision. Studies of IgG preparations pooled from patient cohorts (n = 26-27) show that pathological autoantibodies are present in the wider population of patients with persistent CRPS, and that patients with more severe pain have higher effective autoantibody titres than patients with moderate pain intensity. Electrophysiological investigation of skin-nerve preparations from mice treated with CRPS IgG from a single patient identified both a significantly increased evoked impulse activity in A and C nociceptors, and an increased spontaneous impulse rate in the intact saphenous nerve. Our results show that painful hypersensitivity in persistent CRPS is maintained by autoantibodies, which act by sensitizing A and C nociceptors.


Assuntos
Autoanticorpos , Síndromes da Dor Regional Complexa/fisiopatologia , Hiperalgesia/fisiopatologia , Nociceptores/fisiologia , Limiar da Dor/fisiologia , Animais , Modelos Animais de Doenças , Humanos , Imunoglobulina G , Camundongos , Medição da Dor , Pele/inervação
20.
J Invest Dermatol ; 139(9): 1936-1945.e3, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30974165

RESUMO

Increasing evidence suggests that nerve fibers responding to noxious stimuli (nociceptors) modulate immunity in a variety of tissues, including the skin. Yet, the role of nociceptors in regulating sterile cutaneous inflammation remains unexplored. To address this question, we have developed a detailed description of the sterile inflammation caused by overexposure to UVB irradiation (i.e., sunburn) in the mouse plantar skin. Using this model, we observed that chemical depletion of nociceptor terminals did not alter the early phase of the inflammatory response to UVB, but it caused a significant increase in the number of dendritic cells and αß+ T cells as well as enhanced extravasation during the later stages of inflammation. Finally, we showed that such regulation was driven by the nociceptive neuropeptide calcitonin gene-related peptide. In conclusion, we propose that nociceptors not only play a crucial role in inflammation through avoidance reflexes and behaviors, but can also regulate sterile cutaneous immunity in vivo.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Dermatite/imunologia , Nociceptores/imunologia , Pele/efeitos da radiação , Queimadura Solar/imunologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/genética , Células Dendríticas/imunologia , Modelos Animais de Doenças , Diterpenos/toxicidade , Feminino , Humanos , Camundongos , Camundongos Knockout , Fibras Nervosas/efeitos dos fármacos , Fibras Nervosas/imunologia , Fibras Nervosas/metabolismo , Neurotoxinas/toxicidade , Nociceptores/efeitos dos fármacos , Nociceptores/metabolismo , Pele/citologia , Pele/imunologia , Pele/inervação , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Raios Ultravioleta/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA