Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Calcif Tissue Int ; 112(5): 621-627, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36764958

RESUMO

Pregnancy- and lactation-associated osteoporosis (PLO) is a rare form of osteoporosis, of which the pathogenesis and best treatment options are unclear. In this report, we describe the case of a 34-year old woman diagnosed with severe osteoporosis and multiple vertebral fractures after her first pregnancy, who was subsequently treated with teriparatide (TPTD) and zoledronic acid (ZA). We describe the clinical features, imaging examination, and genetic analysis. Substantial improvements were observed in areal and volumetric bone mineral density (BMD), microarchitecture, and strength between 7 and 40 months postpartum as assessed by dual-energy X-ray absorptiometry at the total hip and spine and by high-resolution peripheral quantitative CT at the distal radius and tibiae. At the hip, spine, and distal radius, these improvements were mainly enabled by treatment with TPTD and ZA, while at the distal tibiae, physiological recovery and postpartum physiotherapy due to leg pain after stumbling may have played a major role. Additionally, the findings show that, despite the improvements, BMD, microarchitecture, and strength remained severely impaired in comparison with healthy age- and gender-matched controls at 40 months postpartum. Genetic analysis showed no monogenic cause for osteoporosis, and it is suggested that PLO in this woman could have a polygenic origin with possible susceptibility based on familiar occurrence of osteoporosis.


Assuntos
Conservadores da Densidade Óssea , Osteoporose , Humanos , Gravidez , Feminino , Adulto , Teriparatida/uso terapêutico , Ácido Zoledrônico/uso terapêutico , Conservadores da Densidade Óssea/uso terapêutico , Osteoporose/etiologia , Densidade Óssea , Lactação
2.
Curr Osteoporos Rep ; 21(6): 685-697, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37884821

RESUMO

PURPOSE OF REVIEW: Summarize the recent literature that investigates how advanced medical imaging has contributed to our understanding of skeletal phenotypes and fracture risk across the lifespan. RECENT FINDINGS: Characterization of bone phenotypes on the macro-scale using advanced imaging has shown that while wide bones are generally stronger than narrow bones, they may be more susceptible to age-related declines in bone strength. On the micro-scale, HR-pQCT has been used to identify bone microarchitecture phenotypes that improve stratification of fracture risk based on phenotype-specific risk factors. Adolescence is a key phase for bone development, with distinct sex-specific growth patterns and significant within-sex bone property variability. However, longitudinal studies are needed to evaluate how early skeletal growth impacts adult bone phenotypes and fracture risk. Metabolic and rare bone diseases amplify fracture risk, but the interplay between bone phenotypes and disease remains unclear. Although bone phenotyping is a promising approach to improve fracture risk assessment, the clinical availability of advanced imaging is still limited. Consequently, alternative strategies for assessing and managing fracture risk include vertebral fracture assessment from clinically available medical imaging modalities/techniques or from fracture risk assessment tools based on clinical risk factors. Bone fragility is not solely determined by its density but by a combination of bone geometry, distribution of bone mass, microarchitecture, and the intrinsic material properties of bone tissue. As such, different individuals can exhibit distinct bone phenotypes, which may predispose them to be more vulnerable or resilient to certain perturbations that influence bone strength.


Assuntos
Fraturas Ósseas , Osteoporose , Masculino , Adulto , Feminino , Humanos , Osso e Ossos/diagnóstico por imagem , Densidade Óssea , Osteoporose/diagnóstico por imagem , Fraturas Ósseas/diagnóstico por imagem , Tomografia Computadorizada por Raios X
3.
Bone ; 175: 116859, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37507063

RESUMO

High-resolution peripheral quantitative CT (HR-pQCT) enables quantitative assessment of distal radius fracture healing. In previous studies, lower-mineralized tissue formation was observed on HR-pQCT scans, starting early during healing, but the contribution of this tissue to the stiffness of distal radius fractures is unknown. Therefore, the aim of this study was to investigate the contribution of lower-mineralized tissue to the stiffness of fractured distal radii during the first twelve weeks of healing. We did so by combining the results from two series of micro-finite element (µFE-) models obtained using different density thresholds for bone segmentation. Forty-five postmenopausal women with a conservatively-treated distal radius fracture had HR-pQCT scans of their fractured radius at baseline (BL; 1-2 weeks post-fracture), 3-4 weeks, 6-8 weeks, and 12 weeks post-fracture. Compression stiffness (S) was computed using two series of µFE-models from the scans: one series (Msingle) included only higher-mineralized tissue (>320 mg HA/cm3), and one series (Mdual) differentiated between lower-mineralized tissue (200-320 mg HA/cm3) and higher-mineralized tissue. µFE-elements were assigned a Young's Modulus of 10 GPa (higher-mineralized tissue) or 5 GPa (lower-mineralized tissue), and an axial compression test to 1 % strain was simulated. The contribution of the lower-mineralized tissue to S was quantified as the ratio Sdual/Ssingle. Changes during healing were quantified using linear mixed effects models and expressed as estimated marginal means (EMMs) with 95 %-confidence intervals (95 %-CI). Median time to cast removal was 5.0 (IQR: 1.1) weeks. Sdual and Ssingle gradually increased during healing to a significantly higher value than BL at 12 weeks post-fracture (both p < 0.0001). In contrast, Sdual/Ssingle was significantly higher than BL at 3-4 weeks post-fracture (p = 0.0010), remained significantly higher at 6-8 weeks post-fracture (p < 0.0001), and then decreased to BL-values at the 12-week visit. EMMs ranged between 1.05 (95 %-CI: 1.04-1.06) and 1.08 (95 %-CI: 1.07-1.10). To conclude, combining stiffness results from two series of µFE-models obtained using single- and dual-threshold segmentation enables quantification of the contribution of lower-mineralized tissue to the stiffness of distal radius fractures during healing. This contribution is minor but changes significantly around the time of cast removal. Its course and timing during healing may be clinically relevant. Quantification of the contribution of lower-mineralized tissue to stiffness gives a more complete impression of strength recovery post-fracture than the evaluation of stiffness using a single series of µFE-models.


Assuntos
Fraturas do Rádio , Fraturas do Punho , Humanos , Feminino , Rádio (Anatomia)/diagnóstico por imagem , Análise de Elementos Finitos , Fraturas do Rádio/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Anticorpos , Densidade Óssea
4.
Front Cell Dev Biol ; 9: 627784, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777936

RESUMO

It is challenging to study heterotopic ossification (HO) in patients with fibrodysplasia ossificans progressiva (FOP) due to the contraindication of invasive techniques (i.e., bone biopsies), which can trigger flare-ups. The aim of this case study was to assess mature HO at the microarchitectural level non-invasively with high-resolution peripheral quantitative computed tomography (HR-pQCT). Depending on the patient's mobility, HR-pQCT scans were acquired of peripherally located HO and standard distal radius and tibia regions in two FOP patients, a 33-year-old woman and a 23-year-old man, with the classical mutation (p.R206H). HO was located around the halluces, the ankles, and in the Achilles tendon. Standard HR-pQCT analyses were performed of the distal radius, tibia, and HO to quantify bone mineral density (BMD) and bone microarchitecture. Micro-finite element analysis was used to estimate failure load (FL). The outcomes were compared between HO and neighboring skeletal bone and with an age- and gender-matched normative dataset from literature. The bone parameters of the radius were within the interquartile range (IQR) of normative data. In contrast, in the tibiae of both patients, total and trabecular BMD were below the IQR, as were trabecular bone volume fraction, number, and thickness, cortical thickness, and FL. Trabecular separation and heterogeneity were above the IQR. Isolated HO in the Achilles tendon had a lower total, trabecular, and cortical BMD, trabecular bone volume fraction, and cortical thickness than the normative tibia data. Trabecular microarchitecture was within the IQR, and FL was approximately 10% higher than that of the neighboring tibia after accounting for areal differences. Other scanned HO could only be qualitatively assessed, which revealed coalescence with the neighboring skeletal bone, development of a neo-cortex, and partial replacement of the original skeletal cortex with trabeculae. To conclude, isolated HO seemed microarchitecturally more comparable to reference tibia data than the peripheral skeleton of the FOP patients. HO and skeleton also appear to be able to become one entity when contiguous.

5.
J Biomech ; 128: 110726, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34534791

RESUMO

Scaphoid fractures are difficult to diagnose with current imaging modalities. It is unknown whether the shape of the scaphoid bone, assessed by statistical shape modeling, can be used to differentiate between fractured and non-fractured bones. Therefore, the aim of this study was to investigate whether the presence of a scaphoid fracture is associated with shape modes of a statistical shape model (SSM). Forty-one high-resolution peripheral quantitative computed tomography (HR-pQCT) scans were available from patients with a clinically suspected scaphoid fracture of whom 15 patients had a scaphoid fracture. The scans showed no motion artefacts affecting bone shape. The scaphoid bones were semi-automatically contoured, and the contours were converted to triangular meshes. The meshes were registered, followed by principal component analysis to determine mean shape and shape modes describing shape variance. The first five out of the forty shape modes cumulatively explained 87.8% of the shape variance. Logistic regression analysis was used to study the association between shape modes and fracture presence. The regression models were used to classify the 41 scaphoid bones as fractured or non-fractured using a cut-off value that maximized the sum of sensitivity and specificity. The classification of the models was compared with fracture diagnosis on HR-pQCT. A regression model with four shape modes had an area under the ROC-curve of 72.3% and correctly classified 75.6% of the scaphoid bones (fractured: 60.0%, non-fractured: 84.6%). To conclude, fracture presence in patients with a clinically suspected scaphoid fracture appears to be associated with the shape of the scaphoid bone.


Assuntos
Fraturas Ósseas , Osso Escafoide , Fraturas Ósseas/diagnóstico por imagem , Humanos , Modelos Estatísticos , Osso Escafoide/diagnóstico por imagem , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA