Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 37(19): 5950-5963, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33969986

RESUMO

Layer-by-layer (LbL) assembly is a versatile platform for applying coatings and studying the properties of promising compounds for antifouling applications. Here, alginate-based LbL coatings were fabricated by alternating the deposition of alginic acid and chitosan or polyethylenimine to form multilayer coatings. Films were prepared with either odd or even bilayer numbers to investigate if the termination of the LbL coatings affects the physicochemical properties, resistance against the nonspecific adsorption (NSA) of proteins, and antifouling efficacy. The hydrophilic films, which were characterized using spectroscopic ellipsometry, water contact angle goniometry, ATR-FTIR spectroscopy, AFM, XPS, and SPR spectroscopy, revealed high swelling in water and strongly reduced the NSA of proteins compared to the hydrophobic reference. While the choice of the polycation was important for the protein resistance of the LbL coatings, the termination mattered less. The attachment of diatoms and settling of barnacle cypris larvae revealed good antifouling properties that were controlled by the termination and the charge density of the LbL films.


Assuntos
Alginatos , Incrustação Biológica , Adsorção , Incrustação Biológica/prevenção & controle , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície
2.
Langmuir ; 36(37): 10996-11004, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32830498

RESUMO

Peptide-functionalized surfaces, composed of optimized l-peptides, show a high resistance toward nonspecific adsorption of proteins. As l-peptides are known to be prone to proteolytic degradation, the aim of this work is to enhance the stability against enzymatic degradation by using the all d-peptide mirror image of the optimized l-peptides and to determine if the all d-enantiomer retains the protein-resistant and antifouling properties. Two l-peptides and their d-peptide mirror images, some of them containing the nonproteinogenic amino acid α-aminoisobutyric acid (Aib), were synthesized and tested against non-specific adsorption of the proteins lysozyme and fibrinogen and the settlement of marine diatom Navicula perminuta and marine bacteria Cobetia marina. Both the d-enantiomer and the insertion of Aib protected the peptides from proteolytic degradation. Protein resistance was enhanced with the d-enantiomers while maintaining the resistance toward diatoms.

3.
ACS Appl Mater Interfaces ; 13(42): 49682-49691, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34663068

RESUMO

Zwitterionic peptides are facile low-fouling compounds for environmental applications as they are biocompatible and fully biodegradable as their degradation products are just amino acids. Here, a set of histidine (H) and glutamic acid (E), as well as lysine (K) and glutamic acid (E) based peptide sequences with zwitterionic properties were synthesized. Both oligopeptides (KE)4K and (HE)4H were synthesized in d and l configurations to test their ability to resist the nonspecific adsorption of the proteins lysozyme and fibrinogen. The coatings were additionally tested against the attachment of the marine organisms Navicula perminuta and Cobetia marina as well as the freshwater bacterium Pseudomonas fluorescens on the developed coatings. While the peptides containing lysine performed better in protein resistance assays and against freshwater bacteria, the sequences containing histidine were generally more resistant against marine organisms. The contribution of amino acid-intrinsic properties such as side chain pKa values and hydrophobicity, as well as external parameters such as pH and salinity of fresh water and seawater on the resistance of the coatings is discussed. In this way, a detailed picture emerges as to which zwitterionic sequences show advantages in future generations of biocompatible, sustainable, and nontoxic fouling release coatings.


Assuntos
Incrustação Biológica/prevenção & controle , Diatomáceas/efeitos dos fármacos , Peptídeos/farmacologia , Água Doce/microbiologia , Teste de Materiais , Conformação Molecular , Peptídeos/síntese química , Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA