Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069171

RESUMO

Micro-environmental factors, including stromal and immune cells, cytokines, and circulating hormones are well recognized to determine cancer progression. Melanoma cell growth was recently shown to be suppressed by cholecystokinin/gastrin (CCK) receptor antagonists, and our preliminary data suggested that melanoma patients with Helicobacter gastritis (which is associated with elevated serum gastrin) might have an increased risk of cancer progression. Therefore, in the present study, we examined how gastrin may act on melanoma cells. In 89 melanoma patients, we found a statistically significant association between circulating gastrin concentrations and melanoma thickness and metastasis, which are known risk factors of melanoma progression and prognosis. Immunocytochemistry using a validated antibody confirmed weak to moderate CCK2R expression in both primary malignant melanoma cells and the melanoma cell lines SK-MEL-2 and G361. Furthermore, among the 219 tumors in the Skin Cutaneous Melanoma TCGA Pan-Cancer dataset showing gastrin receptor (CCKBR) expression, significantly higher CCKBR mRNA levels were linked to stage III-IV than stage I-II melanomas. In both cell lines, gastrin increased intracellular calcium levels and stimulated cell migration and invasion through mechanisms inhibited by a CCK2 receptor antagonist. Proteomic studies identified increased MMP-2 and reduced TIMP-3 levels in response to gastrin that were likely to contribute to the increased migration of both cell lines. However, the effects of gastrin on tumor cell invasion were relatively weak in the presence of the extracellular matrix. Nevertheless, dermal fibroblasts/myofibroblasts, known also to express CCK2R, increased gastrin-induced cancer cell invasion. Our data suggest that in a subset of melanoma patients, an elevated serum gastrin concentration is a risk factor for melanoma tumor progression, and that gastrin may act on both melanoma and adjacent stromal cells through CCK2 receptors to promote mechanisms of tumor migration and invasion.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/metabolismo , Gastrinas/farmacologia , Gastrinas/metabolismo , Proteômica , Receptores da Colecistocinina , Receptor de Colecistocinina B/genética , Receptor de Colecistocinina B/metabolismo
2.
Carcinogenesis ; 35(8): 1798-806, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24710625

RESUMO

Stromal cells influence cancer progression. Myofibroblasts are an important stromal cell type, which influence the tumour microenvironment by release of extracellular matrix (ECM) proteins, proteases, cytokines and chemokines. The mechanisms of secretion are poorly understood. Here, we describe the secretion of marker proteins in gastric cancer and control myofibroblasts in response to insulin-like growth factor (IGF) stimulation and, using functional genomic approaches, we identify proteins influencing the secretory response. IGF rapidly increased myofibroblast secretion of an ECM protein, TGFßig-h3. The secretory response was not blocked by inhibition of protein synthesis and was partially mediated by increased intracellular calcium (Ca(2+)). The capacity for evoked secretion was associated with the presence of dense-core secretory vesicles and was lost in cells from patients with advanced gastric cancer. In cells responding to IGF-II, the expression of neuroendocrine marker proteins, including secretogranin-II and proenkephalin, was identified by gene array and LC-MS/MS respectively, and verified experimentally. The expression of proenkephalin was decreased in cancers from patients with advanced disease. Inhibition of secretogranin-II expression decreased the secretory response to IGF, and its over-expression recovered the secretory response consistent with a role in secretory vesicle biogenesis. We conclude that normal and some gastric cancer myofibroblasts have a neuroendocrine-like phenotype characterized by Ca(2+)-dependent regulated secretion, dense-core secretory vesicles and expression of neuroendocrine marker proteins; loss of the phenotype is associated with advanced cancer. A failure to regulate myofibroblast protein secretion may contribute to cancer progression.


Assuntos
Fator de Crescimento Insulin-Like II/metabolismo , Miofibroblastos/patologia , Sistemas Neurossecretores/patologia , Secretogranina II/metabolismo , Neoplasias Gástricas/patologia , Western Blotting , Estudos de Casos e Controles , Células Cultivadas , Progressão da Doença , Exocitose/fisiologia , Mucosa Gástrica/metabolismo , Humanos , Técnicas Imunoenzimáticas , Marcação por Isótopo , Miofibroblastos/metabolismo , Sistemas Neurossecretores/metabolismo , Fenótipo , RNA Interferente Pequeno/genética , Secretogranina II/antagonistas & inibidores , Secretogranina II/genética , Neoplasias Gástricas/metabolismo , Espectrometria de Massas em Tandem
3.
Nat Commun ; 13(1): 801, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145105

RESUMO

When conditions change, unicellular organisms rewire their metabolism to sustain cell maintenance and cellular growth. Such rewiring may be understood as resource re-allocation under cellular constraints. Eukaryal cells contain metabolically active organelles such as mitochondria, competing for cytosolic space and resources, and the nature of the relevant cellular constraints remain to be determined for such cells. Here, we present a comprehensive metabolic model of the yeast cell, based on its full metabolic reaction network extended with protein synthesis and degradation reactions. The model predicts metabolic fluxes and corresponding protein expression by constraining compartment-specific protein pools and maximising growth rate. Comparing model predictions with quantitative experimental data suggests that under glucose limitation, a mitochondrial constraint limits growth at the onset of ethanol formation-known as the Crabtree effect. Under sugar excess, however, a constraint on total cytosolic volume dictates overflow metabolism. Our comprehensive model thus identifies condition-dependent and compartment-specific constraints that can explain metabolic strategies and protein expression profiles from growth rate optimisation, providing a framework to understand metabolic adaptation in eukaryal cells.


Assuntos
Redes e Vias Metabólicas , Proteoma/metabolismo , Proteômica , Leveduras/genética , Leveduras/metabolismo , Fermentação , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Redes e Vias Metabólicas/genética , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Leveduras/crescimento & desenvolvimento
4.
Microb Genom ; 6(1)2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31922467

RESUMO

The majority of bacterial genomes have high coding efficiencies, but there are some genomes of intracellular bacteria that have low gene density. The genome of the endosymbiont Sodalis glossinidius contains almost 50 % pseudogenes containing mutations that putatively silence them at the genomic level. We have applied multiple 'omic' strategies, combining Illumina and Pacific Biosciences Single-Molecule Real-Time DNA sequencing and annotation, stranded RNA sequencing and proteome analysis to better understand the transcriptional and translational landscape of Sodalis pseudogenes, and potential mechanisms for their control. Between 53 and 74 % of the Sodalis transcriptome remains active in cell-free culture. The mean sense transcription from coding domain sequences (CDSs) is four times greater than that from pseudogenes. Comparative genomic analysis of six Illumina-sequenced Sodalis isolates from different host Glossina species shows pseudogenes make up ~40 % of the 2729 genes in the core genome, suggesting that they are stable and/or that Sodalis is a recent introduction across the genus Glossina as a facultative symbiont. These data shed further light on the importance of transcriptional and translational control in deciphering host-microbe interactions. The combination of genomics, transcriptomics and proteomics gives a multidimensional perspective for studying prokaryotic genomes with a view to elucidating evolutionary adaptation to novel environmental niches.


Assuntos
Enterobacteriaceae/genética , Genes Bacterianos , Pseudogenes , Animais , Proteínas de Bactérias/genética , Proteoma , Análise de Sequência de DNA , Análise de Sequência de RNA , Simbiose , Transcriptoma , Moscas Tsé-Tsé/microbiologia
5.
Oncotarget ; 10(2): 98-112, 2019 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-30719206

RESUMO

The chemokine-like peptide, chemerin, stimulates chemotaxis in several cell types. In this study we examined the expression of putative chemerin receptors in gastric cancer and the action of chemerin on cancer cell migration and invasion. Immunohistochemical studies of gastric tumors identified expression of two putative receptors, chemokine-like receptor-1 (CMKLR1) and G-protein coupled receptor 1(GPR1), in cancer cells; there was also some expression in stromal myofibroblasts although generally at a lower intensity. The expression of both receptors was detected in a gastric cancer cell line, AGS; chemerin itself was expressed in cultured gastric cancer myofibroblasts but not AGS cells. Chemerin stimulated (a) morphological transformation of AGS cells characterized by extension of processes and cell scattering, (b) migration in scratch wound assays and (c) both migration and invasion in Boyden chamber chemotaxis assays. These responses were inhibited by two putative receptor antagonists CCX832 and α-NETA. Inhibition of receptor expression by siRNA selectively reduced CMKLR1 or GPR1 and inhibited the action of chemerin indicating that both receptors contributed to the functional response. Using a proteomic approach employing stable isotope dynamic labeling of secretomes (SIDLS) to selectively label secreted proteins, we identified down regulation of tissue inhibitors of metalloproteinease (TIMP)1 and TIMP2 in media in response to chemerin. When cells were treated with chemerin and TIMP1 or TIMP2 the migration response to chemerin was reduced. The data suggest a role for chemerin in promoting the invasion of gastric cancer cells via CMKLR1 and GPR1at least partly by reducing TIMP1 and TIMP2 expression. Chemerin receptor antagonists have potential in inhibiting gastric cancer progression.

6.
Physiol Rep ; 6(10): e13683, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29845775

RESUMO

Matrix metalloproteinase (MMP)-7, unlike many MMPs, is typically expressed in epithelial cells. It has been linked to epithelial responses to infection, injury, and tissue remodeling including the progression of a number of cancers. We have now examined how MMP-7 expression changes in the progression to esophageal adenocarcinoma (EAC), and have studied mechanisms regulating its expression and its functional significance. Immunohistochemistry revealed that MMP-7 was weakly expressed in normal squamous epithelium adjacent to EAC but was abundant in epithelial cells in both preneoplastic lesions of Barrett's esophagus and EAC particularly at the invasive front. In the stroma, putative myofibroblasts expressing MMP-7 were abundant at the invasive front but were scarce or absent in adjacent tissue. Western blot and ELISA revealed high constitutive secretion of proMMP-7 in an EAC cell line (OE33) that was inhibited by the phosphatidylinositol (PI) 3-kinase inhibitor LY294002 but not by inhibitors of protein kinase C, or MAP kinase activation. There was detectable proMMP-7 in cultured esophageal myofibroblasts but it was undetectable in media. Possible metabolism of MMP-7 by myofibroblasts studied by proteomic analysis indicated degradation via extensive endopeptidase, followed by amino- and carboxpeptidase, cleavages. Myofibroblasts exhibited increased migration and invasion in response to conditioned media from OE33 cells that was reduced by MMP-7 knockdown and immunoneutralization. Thus, MMP-7 expression increases at the invasive front in EAC which may be partly attributable to activation of PI 3-kinase. Secreted MMP-7 may modify the tumor microenvironment by stimulating stromal cell migration and invasion.


Assuntos
Adenocarcinoma/metabolismo , Esôfago de Barrett/metabolismo , Neoplasias Esofágicas/metabolismo , Metaloproteinase 7 da Matriz/metabolismo , Adenocarcinoma/complicações , Idoso , Esôfago de Barrett/complicações , Linhagem Celular Tumoral , Progressão da Doença , Neoplasias Esofágicas/complicações , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Miofibroblastos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA