Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Toxicol Environ Health A ; 87(12): 497-515, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38619158

RESUMO

One prominent aspect of Parkinson's disease (PD) is the presence of elevated levels of free radicals, including reactive oxygen species (ROS). Syagrus coronata (S. coronata), a palm tree, exhibits antioxidant activity attributed to its phytochemical composition, containing fatty acids, polyphenols, and flavonoids. The aim of this investigation was to examine the potential neuroprotective effects of S. coronata fixed oil against rotenone-induced toxicity using Drosophila melanogaster. Young Drosophila specimens (3-4 d old) were exposed to a diet supplemented with rotenone (50 µM) for 7 d with and without the inclusion of S. coronata fixed oil (0.2 mg/g diet). Data demonstrated that rotenone exposure resulted in significant locomotor impairment and increased mortality rates in flies. Further, rotenone administration reduced total thiol levels but elevated lipid peroxidation, iron (Fe) levels, and nitric oxide (NO) levels while decreasing the reduced capacity of mitochondria. Concomitant administration of S. coronata exhibited a protective effect against rotenone, as evidenced by a return to control levels of Fe, NO, and total thiols, lowered lipid peroxidation levels, reversed locomotor impairment, and enhanced % cell viability. Molecular docking of the oil lipidic components with antioxidant enzymes showed strong binding affinity to superoxide dismutase (SOD) and glutathione peroxidase (GPX1) enzymes. Overall, treatment with S. coronata fixed oil was found to prevent rotenone-induced movement disorders and oxidative stress in Drosophila melanogaster.


Assuntos
Transtornos dos Movimentos , Rotenona , Animais , Drosophila melanogaster , Simulação de Acoplamento Molecular , Estresse Oxidativo , Antioxidantes/farmacologia , Óxido Nítrico/metabolismo
2.
J Oleo Sci ; 73(8): 1091-1104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39085083

RESUMO

The Bauhinia ungulata, also known by its common name "pata de vaca", is one of the species used in Brazil for medicinal purposes, and is commonly used for the treatment of diabetes. In this study, the authors studied the interaction between the chemical constituents which are present in the essential oil of Bauhinia ungulata (EOBU), collected in Boa Vista-RR, Legal Amazon, and their effects on the enzyme acetylcholinesterase (AChE) in the essential oil. The analysis that we perform includes proton magnetic resonance ( 1H NMR), enzymatic inhibition, molecular docking, in silico toxicity prediction, enrichment analysis, and target prediction for biological interactions. According to the tests performed on the essential oil, it obtained 100% inhibition of the enzyme AChE. During 1H NMR experiments, it was found that α- Bisabolol, one of the main components, had a significant alteration in its chemical shift. A molecular docking analysis confirmed that this compound binds to the AChE enzyme, which confirms the 1H NMR analysis. The results of this work showed that the major component of EOBU acted as a possible inhibitor of AChE enzyme in vitro and in silico assays. These results show that EOBU could be potentially applied in Alzheimer's disease treatment.


Assuntos
Acetilcolinesterase , Bauhinia , Inibidores da Colinesterase , Simulação de Acoplamento Molecular , Óleos Voláteis , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Bauhinia/química , Brasil , Acetilcolinesterase/metabolismo , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Simulação por Computador , Sesquiterpenos/farmacologia , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/química
3.
Anticancer Agents Med Chem ; 24(10): 798-811, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500290

RESUMO

INTRODUCTION: Bee venom has therapeutics and pharmacological properties. Further toxicological studies on animal models are necessary due to the severe allergic reactions caused by this product. METHOD: Here, Caenorhabditis elegans was used as an in vivo toxicity model, while breast cancer cells were used to evaluate the pharmacological benefits. The bee venom utilized in this research was collected from Apis mellifera species found in Northeast Brazil. The cytotoxicity caused by bee venom was measured by MTT assay on MDA-MB-231 and J774 A.1 cells during 24 - 72 hours of exposure. C. elegans at the L4 larval stage were exposed for three hours to M9 buffer or bee venom. Survival, behavioral parameters, reproduction, DAF-16 transcription factor translocation, the expression of superoxide dismutase (SOD), and metabolomics were analyzed. Bee venom suppressed the growth of MDA-MB-231 cancer cells and exhibited cytotoxic effects on macrophages. Also, decreased C. elegans survival impacted its behaviors by decreasing C. elegans feeding behavior, movement, and reproduction. RESULTS: Bee venom did not increase the expression of SOD-3, but it enhanced DAF-16 translocation from the cytoplasm to the nucleus. C. elegans metabolites differed after bee venom exposure, primarily related to aminoacyl- tRNA biosynthesis, glycine, serine and threonine metabolism, and sphingolipid and purine metabolic pathways. Our findings indicate that exposure to bee venom resulted in harmful effects on the cells and animal models examined. CONCLUSION: Thus, due to its potential toxic effect and induction of allergic reactions, using bee venom as a therapeutic approach has been limited. The development of controlled-release drug strategies to improve this natural product's efficacy and safety should be intensified.


Assuntos
Antineoplásicos , Venenos de Abelha , Caenorhabditis elegans , Animais , Humanos , Venenos de Abelha/farmacologia , Venenos de Abelha/química , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Relação Dose-Resposta a Droga , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Estrutura-Atividade , Feminino , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA