RESUMO
Flexible polydimethylsiloxane-La2Ba2XZn2Ti3O14 (X = Mg/Ca/Sr) [PDMS-LBT] nanocomposites with high permittivity (dielectric constant, k) are prepared through a room-temperature mixing process. The LBT nanoparticles used in this study are prepared through a high-temperature solid-state reaction. It is observed that LBT (X = Mg/Ca) nanoparticles are spherical in nature, with particle size â¼20 nm, as observed from the HRTEM images, whereas LBT (X = Sr) nanoparticles are cubical in nature with particle size ≥100 nm. These LBT (X = Mg/Ca/Sr) nanoparticles are crystalline in nature, as apparent from the XRD analysis and SAED patterns. The permittivity of LBT nanoparticles is higher when "Ca" is present in place of "X". These three oxides show a temperature-dependent dielectric behavior, where LBT nanoparticles with "Sr" show a sharp change in permittivity at a temperature of â¼105 °C. These kinds of oxide materials, especially LBT (X = Sr) nanoparticles/oxides, can be used in dielectric/resistive switching devices. The effect of LBT nanoparticle concentration on the dielectric and mechanical properties of PDMS-LBT nanocomposites is widely studied and found that there is a significant increase in dielectric constant with an increase in the concentration of LBT nanoparticles. There is a decrease in the volume resistivity with the increase in the LBT nanoparticle concentration. All the PDMS-LBT nanocomposites have low dielectric loss (εâ³) compared to the dielectric constant value. It is found that both permittivity (ε') and AC conductivity (σac) of PDMS-LBT composites are increased with the temperature at a frequency of 1 Hz. The % elongation at break (% EB) and tensile strength (TS) decrease with the LBT nanoparticle concentration in the matrix PDMS, which is due to the non-reinforcing behavior of LBT nanoparticles. The distribution and dispersion of LBT nanoparticles in the matrix PDMS are observed through HRTEM and AFM/SPM.
RESUMO
Corrosion of metal/steel is a major concern in terms of safety, durability, cost, and environment. We have studied a cost-effective, nontoxic, and environmentally friendly pyromellitic diimide (PMDI) compound as a corrosion inhibitor for galvanized steel through density functional theory. An atomic-scale engineering through the functionalization of PMDI is performed to showcase the enhancement in corrosion inhibition and strengthen the interaction between functionalized PMDI (F-PMDI) and zinc oxide (naturally existing on galvanized steel). PMDI is functionalized with methyl/diamine groups (inh1 (R = -CH3, R' = -CH3), inh2 (R = -CH3, R' = -CH2CH2NH2), and inh3 (R = -C6H3(NH2)2, R' = -CH2CH2NH2). The corrosion inhibition parameters (e.g., orbital energies, electronegativity, dipole moment, global hardness, and electron transfer) indicate the superior corrosion inhibition performance of inh3 (inh3 > inh2 > inh1). Inh3 (â¼182.38 kJ/mol) strongly interacts with ZnO(101Ì 0) compared to inh2 (â¼122.56 kJ/mol) and inh1 (â¼119.66 kJ/mol). The superior performance of inh3 has been probed through charge density and density of states. Larger available states of N and H (of inh3) interact strongly with Zn and Osurf (of the surface), respectively, creating N-Zn and H-Osurf bonds. Interestingly, these bonds only appear in inh3. The charge accumulation on Osurf, and depletion on H(s), further strengthens the bonding between inh3 and ZnO(101Ì 0). The microscopic understanding obtained in this study will be useful to develop low-cost and efficient corrosion inhibitors for galvanized steel.