Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
RSC Adv ; 11(10): 5521-5528, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35423116

RESUMO

The next-generation indium-based lead-free halide material Cs2InAgCl6 is promising for photovoltaic applications due to its good air stability and non-toxic behavior. However, its wide bandgap (>3 eV) is not suitable for the solar spectrum and hence reduces its photoelectronic efficiency for device applications. Here we report a significant bandgap reduction from 2.85 eV to 0.65 eV via substitutional doping and its effects on the optoelectronic and opto-thermoelectric properties from a first-principles study. The results predict that Sn/Pb and Ga and Cu co-doping will enhance the density of states significantly near the valence band maximum (VBM) and thus reduce the bandgap via shifting the VBM upward, while alkali metals (K/Rb) slightly increase the bandgap. A strong absorption peak near the Shockley-Queisser limit is observed in the co-doped case, while in the Sn/Pb-doped case, we notice a peak in the middle of the visible region of the solar spectrum. The nature of the bandgap is indirect with Cu-Ga/Pb/Sn doping, and a significant reduction in the bandgap, from 2.85 eV to 0.65 eV, is observed in the case of Ga-Cu co-doping. We observe a significant increase in the power factor (PF) (2.03 mW m-1 K-2) for the n-type carrier after Pb-doping, which is ∼3.5 times higher than in the pristine case (0.6 mW m -1 K-2) at 500 K.

2.
Sci Rep ; 11(1): 6965, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33772036

RESUMO

The highly successful PBE functional and the modified Becke-Johnson exchange potential were used to calculate the structural, electronic, and optical properties of the vacancy-ordered double perovskites A2BX6 (A = Rb, Cs; B = Sn, Pd, Pt; X = Cl, Br, and I) using the density functional theory, a first principles approach. The convex hull approach was used to check the thermodynamic stability of the compounds. The calculated parameters (lattice constants, band gap, and bond lengths) are in tune with the available experimental and theoretical results. The compounds, Rb2PdBr6 and Cs2PtI6, exhibit band gaps within the optimal range of 0.9-1.6 eV, required for the single-junction photovoltaic applications. The photovoltaic efficiency of the studied materials was assessed using the spectroscopic-limited-maximum-efficiency (SLME) metric as well as the optical properties. The ideal band gap, high dielectric constants, and optimum light absorption of these perovskites make them suitable for high performance single and multi-junction perovskite solar cells.

3.
Appl Radiat Isot ; 77: 38-43, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23518037

RESUMO

We have reported the first-ever experimental Compton profile (CP) of TaB2 using 20 Ci(137)Cs Compton spectrometer. To compare the experimental data, we have also computed the theoretical CPs using density functional theory (DFT) and hybridization of DFT and Hartree-Fock (HF) within linear combination of the atomic orbitals (LCAO) method. In addition, we have reported energy bands and density of states of TaB2 using LCAO and full potential-linearized augmented plane wave (FP-LAPW) methods. A real space analysis of CP of TaB2 confirms its metallic character which is in tune with the cross-overs of Fermi level by energy bands and Fermi surface topology. A comparison of equal-valence-electron-density (EVED) experimental profiles of isoelectronic TaB2 and NbB2 show more covalent (or less ionic) character of TaB2 than that of NbB2 which is in agreement with available ionicity data.


Assuntos
Compostos de Boro/química , Teste de Materiais/métodos , Modelos Químicos , Radiometria/métodos , Tantálio/química , Compostos de Boro/análise , Compostos de Boro/efeitos da radiação , Simulação por Computador , Transporte de Elétrons , Radiação , Espalhamento de Radiação , Tantálio/análise , Tantálio/efeitos da radiação
4.
Appl Radiat Isot ; 72: 64-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23208233

RESUMO

In the present work, we have studied electron momentum density of CaCO3 using a Compton scattering technique. The experiment has been performed using a 100 mCi (241)Am (59.54 keV) Compton spectrometer. The experimental data have been interpreted in terms of theoretical Compton profiles. To compute the theoretical momentum densities, energy bands and density of states, we have used linear combination of atomic orbitals method as embodied in CRYSTAL09 code. We have used local density approximation, generalized gradient approximation (GGA) and second order GGA (SOGGA) within the frame work of density functional theory. It is seen that the GGA gives a better agreement with the experimental data than other approximations. We have also discussed the energy bands and density of states of CaCO3.

5.
Appl Radiat Isot ; 70(6): 942-5, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22464413

RESUMO

Isotropic Compton profile of NbB(2) using 20 Ci (137)Cs Compton spectrometer is compared with our theoretical profiles obtained from the density functional theory (DFT) within the first and the second order generalized gradient approximation (GGA) and the hybridization of Hartree-Fock and DFT. A good agreement between GGA based profiles and the experiment validates the applicability of second order GGA in momentum densities. Energy bands, density of states and real space analysis of the experimental profile show metallic character of NbB(2).


Assuntos
Compostos de Boro/química , Modelos Químicos , Nióbio/química , Análise Espectral/métodos , Simulação por Computador , Raios gama , Teste de Materiais , Radiometria/métodos , Refratometria , Espalhamento de Radiação , Raios X
6.
Appl Radiat Isot ; 69(5): 756-61, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21334905

RESUMO

We present the experimental Compton profiles of TiC and TiN using 661.65 keV γ-ray from 20 Ci (137)Cs source. To explain our experimental data on momentum densities, we have computed the theoretical profiles, energy bands and density of states using linear combination of atomic orbitals scheme within the framework of density functional theory. In addition the energy bands, density of states and Fermi surfaces using full potential linearised augmented plane wave method have also been computed. Energy bands and density of states obtained from both the theoretical models show metallic character of TiC and TiN. The anisotropies in Compton line shapes and the Fermi surface topology are discussed in term of energy bands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA