Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 121(4): 742-766, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38204420

RESUMO

Microbial cells must continually adapt their physiology in the face of changing environmental conditions. Archaea living in extreme conditions, such as saturated salinity, represent important examples of such resilience. The model salt-loving organism Haloferax volcanii exhibits remarkable plasticity in its morphology, biofilm formation, and motility in response to variations in nutrients and cell density. However, the mechanisms regulating these lifestyle transitions remain unclear. In prior research, we showed that the transcriptional regulator, TrmB, maintains the rod shape in the related species Halobacterium salinarum by activating the expression of enzyme-coding genes in the gluconeogenesis metabolic pathway. In Hbt. salinarum, TrmB-dependent production of glucose moieties is required for cell surface glycoprotein biogenesis. Here, we use a combination of genetics and quantitative phenotyping assays to demonstrate that TrmB is essential for growth under gluconeogenic conditions in Hfx. volcanii. The ∆trmB strain rapidly accumulated suppressor mutations in a gene encoding a novel transcriptional regulator, which we name trmB suppressor, or TbsP (a.k.a. "tablespoon"). TbsP is required for adhesion to abiotic surfaces (i.e., biofilm formation) and maintains wild-type cell morphology and motility. We use functional genomics and promoter fusion assays to characterize the regulons controlled by each of TrmB and TbsP, including joint regulation of the glucose-dependent transcription of gapII, which encodes an important gluconeogenic enzyme. We conclude that TrmB and TbsP coregulate gluconeogenesis, with downstream impacts on lifestyle transitions in response to nutrients in Hfx. volcanii.


Assuntos
Proteínas Arqueais , Haloferax volcanii , Haloferax volcanii/genética , Glucose/metabolismo , Redes e Vias Metabólicas , Glicoproteínas de Membrana/metabolismo , Fenótipo , Proteínas Arqueais/metabolismo
2.
Sci Adv ; 10(26): eadj2020, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38924411

RESUMO

Chronic wounds are a common and costly complication of diabetes, where multifactorial defects contribute to dysregulated skin repair, inflammation, tissue damage, and infection. We previously showed that aspects of the diabetic foot ulcer microbiota were correlated with poor healing outcomes, but many microbial species recovered remain uninvestigated with respect to wound healing. Here, we focused on Alcaligenes faecalis, a Gram-negative bacterium that is frequently recovered from chronic wounds but rarely causes infection. Treatment of diabetic wounds with A. faecalis accelerated healing during early stages. We investigated the underlying mechanisms and found that A. faecalis treatment promotes reepithelialization of diabetic keratinocytes, a process that is necessary for healing but deficient in chronic wounds. Overexpression of matrix metalloproteinases in diabetes contributes to failed epithelialization, and we found that A. faecalis treatment balances this overexpression to allow proper healing. This work uncovers a mechanism of bacterial-driven wound repair and provides a foundation for the development of microbiota-based wound interventions.


Assuntos
Alcaligenes faecalis , Queratinócitos , Metaloproteinases da Matriz , Cicatrização , Alcaligenes faecalis/metabolismo , Animais , Queratinócitos/metabolismo , Queratinócitos/microbiologia , Humanos , Metaloproteinases da Matriz/metabolismo , Metaloproteinases da Matriz/genética , Pé Diabético/microbiologia , Pé Diabético/patologia , Pé Diabético/metabolismo , Camundongos , Reepitelização , Masculino
3.
Cell Rep ; 43(4): 114029, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38573852

RESUMO

The host-microbiota relationship has evolved to shape mammalian physiology, including immunity, metabolism, and development. Germ-free models are widely used to study microbial effects on host processes such as immunity. Here, we find that both germ-free and T cell-deficient mice exhibit a robust sebum secretion defect persisting across multiple generations despite microbial colonization and T cell repletion. These phenotypes are inherited by progeny conceived during in vitro fertilization using germ-free sperm and eggs, demonstrating that non-genetic information in the gametes is required for microbial-dependent phenotypic transmission. Accordingly, gene expression in early embryos derived from gametes from germ-free or T cell-deficient mice is strikingly and similarly altered. Our findings demonstrate that microbial- and immune-dependent regulation of non-genetic information in the gametes can transmit inherited phenotypes transgenerationally in mice. This mechanism could rapidly generate phenotypic diversity to enhance host adaptation to environmental perturbations.


Assuntos
Microbiota , Fenótipo , Linfócitos T , Animais , Camundongos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Masculino , Feminino , Camundongos Endogâmicos C57BL
4.
mSphere ; 9(3): e0063623, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38415632

RESUMO

Colonization of human skin and nares by methicillin-resistant Staphylococcus aureus (MRSA) leads to the community spread of MRSA. This spread is exacerbated by the transfer of MRSA between humans and livestock, particularly swine. Here, we capitalized on the shared features between human and porcine skin, including shared MRSA colonization, to study novel bacterial mediators of MRSA colonization resistance. We focused on the poorly studied bacterial species Desemzia incerta, which we found to exert antimicrobial activity through a secreted product and exhibited colonization resistance against MRSA in an in vivo murine skin model. Using parallel genomic and biochemical investigation, we discovered that D. incerta secretes an antimicrobial protein. Sequential protein purification and proteomics analysis identified 24 candidate inhibitory proteins, including a promising peptidoglycan hydrolase candidate. Aided by transcriptional analysis of D. incerta and MRSA cocultures, we found that exposure to D. incerta leads to decreased MRSA biofilm production. These results emphasize the value of exploring microbial communities across a spectrum of hosts, which can lead to novel therapeutic agents as well as an increased understanding of microbial competition.IMPORTANCEMethicillin-resistant Staphylococcus aureus (MRSA) causes a significant healthcare burden and can be spread to the human population via livestock transmission. Members of the skin microbiome can prevent MRSA colonization via a poorly understood phenomenon known as colonization resistance. Here, we studied the colonization resistance of S. aureus by bacterial inhibitors previously identified from a porcine skin model. We identify a pig skin commensal, Desemzia incerta, that reduced MRSA colonization in a murine model. We employ a combination of genomic, proteomic, and transcriptomic analyses to explore the mechanisms of inhibition between D. incerta and S. aureus. We identify 24 candidate antimicrobial proteins secreted by D. incerta that could be responsible for its antimicrobial activity. We also find that exposure to D. incerta leads to decreased S. aureus biofilm formation. These findings show that the livestock transmission of MRSA can be exploited to uncover novel mechanisms of MRSA colonization resistance.


Assuntos
Anti-Infecciosos , Carnobacteriaceae , Staphylococcus aureus Resistente à Meticilina , Humanos , Suínos , Animais , Camundongos , Staphylococcus aureus , Proteômica
5.
bioRxiv ; 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37425836

RESUMO

Chronic wounds are a common and costly complication of diabetes, where multifactorial defects contribute to dysregulated skin repair, inflammation, tissue damage, and infection. We previously showed that aspects of the diabetic foot ulcer microbiota were correlated with poor healing outcomes, but many microbial species recovered remain uninvestigated with respect to wound healing. Here we focused on Alcaligenes faecalis , a Gram-negative bacterium that is frequently recovered from chronic wounds but rarely causes infection. Treatment of diabetic wounds with A. faecalis accelerated healing during early stages. We investigated the underlying mechanisms and found that A. faecalis treatment promotes re-epithelialization of diabetic keratinocytes, a process which is necessary for healing but deficient in chronic wounds. Overexpression of matrix metalloproteinases in diabetes contributes to failed epithelialization, and we found that A. faecalis treatment balances this overexpression to allow proper healing. This work uncovers a mechanism of bacterial-driven wound repair and provides a foundation for the development of microbiota-based wound interventions.

6.
J Smooth Muscle Res ; 54(0): 100-118, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30787211

RESUMO

Pompe disease (OMIM 232300) is an autosomal recessive disorder caused by mutations in the gene encoding acid α-glucosidase (GAA) (EC 3.2.1.20), the enzyme responsible for hydrolyzing lysosomal glycogen. The primary cellular pathology is lysosomal glycogen accumulation in cardiac muscle, skeletal muscle, and motor neurons, which ultimately results in cardiorespiratory failure. However, the severity of pathology and its impact on clinical outcomes are poorly described in smooth muscle. The advent of enzyme replacement therapy (ERT) in 2006 has improved clinical outcomes in infantile-onset Pompe disease patients. Although ERT increases patient life expectancy and ventilator free survival, it is not entirely curative. Persistent motor neuron pathology and weakness of respiratory muscles, including airway smooth muscles, contribute to the need for mechanical ventilation by some patients on ERT. Some patients on ERT continue to experience life-threatening pathology to vascular smooth muscle, such as aneurysms or dissections within the aorta and cerebral arteries. Better characterization of the disease impact on smooth muscle will inform treatment development and help anticipate later complications. This review summarizes the published knowledge of smooth muscle pathology associated with Pompe disease in animal models and in patients.


Assuntos
Doença de Depósito de Glicogênio Tipo II/fisiopatologia , Músculo Liso/patologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA